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Abstract. In this paper, we present results on strong two-body decay widths of light qq̄ mesons calculated
in a covariant quark model. The model is based on the Bethe-Salpeter equation in its instantaneous
approximation and has already been used for computing the complete meson mass spectrum and many
electroweak decay observables. Our approach relies on the use of a phenomenological confinement potential
with an appropriate spinorial Dirac structure and ’t Hooft’s instanton-induced interaction as a residual force
for pseudoscalar and scalar mesons. The transition matrix element for the decay of one initial meson into
two final mesons is evaluated in lowest order by considering conventional decays via quark loops as well as
Zweig-rule–violating instanton-induced decays generated by the six-quark vertex of ’t Hooft’s interaction;
the latter mechanism only contributes if all mesons in the decay have zero total angular momentum. We
show that the interference of both decay mechanisms plays an important role in the description of the
partial widths of scalar and pseudoscalar mesons.

PACS. 11.10.St Bound and unstable states; Bethe-Salpeter equations – 12.39.Ki Relativistic quark model
– 13.25.-k Hadronic decays of mesons

1 Introduction

The study of the internal structure of mesons is still a
challenge to theoretical physics as well as to experimental
physics. Despite all efforts undertaken in the last decades,
in particular the strong decays of qq̄ bound states are
rather poorly understood. For theory, one of the reasons
might be related to the fact that —at least for the sector of
mesons being composed out of light quarks— a relativistic
treatment of the underlying dynamics seems to be manda-
tory. In principle, this requirement is satisfied by a study of
strong two-body decays on the basis of the Bethe-Salpeter
equation in its instantaneous approximation. However, the
particular structure of the full transition operator for this
class of mesonic decays is quite unclear even in a covari-
ant framework. In the present work, we suppose that the
pure quark loop contribution present in all strong decays
is accompanied by an additional instanton-induced decay
mechanism if and only if all mesons in the process have a
vanishing total angular momentum.

Before we discuss our approach to the problem of
strong two-body decays of light mesons in detail, let
us briefly make some remarks on a non-relativistic phe-
nomenological model which is quite prominent in this
field, namely the so-called 3P0 model. It has its origins
in the early works of A. Le Yaouanc et al. published in
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refs. [1–3] (see also [4]). As has been suggested earlier
by L. Micu (see [5]), the authors assume that these two-
body strong decays proceed via the creation of a qq̄ state
with vacuum quantum numbers Jπc = 0++; the equiv-
alent spectroscopical notation for qq̄ bound states reads
2S+1LJ = 3P0 which has in fact labeled this particular
model. In ref. [6], T. Barnes et al. have reviewed the results
of the modern 3P0 model with respect to strong two-body
decays and compared the results to the (rare and ambigu-
ous) experimental data for light nn̄ ground-state mesons;
higher quarkonia are studied in ref. [7]. For completeness,
we should also mention the recently published work of
R. Bonnaz and B. Silvestre-Brac who include instanton-
induced effects as well as tensor forces in their study on
the basis of the 3P0 model (see [8] and references therein);
for decays of non-nn̄ meson states, we will refer to their
results1.

Our Bethe-Salpeter approach has first been discussed
in refs. [9,10]; recently, we have presented an updated
review concerning meson spectra and electroweak decay
characteristics (see [11,12]). In the present paper, we aim
at a rather complete description of strong two-body decays
of light mesons in the framework of our relativistic quark
model. Our approach is furthermore interesting insofar as

1 Note that a recent preprint by Barnes et al. (see [33] below)
also investigates the non-nn̄meson decays; we comment on this
work in sect. 4.
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we not only compute the quark loop contribution but also
an instanton-induced term for Ji = 0 mesons as well as
the interference of both mechanisms; note that the latter
interaction has already been studied separately in ref. [13]
by Ch. Ritter et al. for the present relativistic framework.

For the following comprehensive discussion, we com-
pare our results with the availiable experimental data
compiled by the Particle Data Group (see [14]; additional
results can be found in [15–19]), on the one hand, as well
as with the results of the 3P0 model presented in refs. [6–
8], on the other hand. Thus, we understand the current
work as a reference frame for a more reliable assessment
of the multifaceted (and partly contradicting) results on
strong two-body decays of light mesons.

We have organized this contribution as follows: in
sect. 2, we briefly review our covariant approach on the
basis of the Bethe-Salpeter equation in its instantaneous
approximation; furthermore, we comment on the results
concerning the light meson spectra (see also [11,12]). The
transition matrix element for strong decays of the type
M1 →M2M3 is derived in sect. 3; as mentioned above, it
includes an instanton-induced contribution for scalar and
pseudoscalar mesons beyond the lowest order quark loop
part. Our results for numerous decays are presented and
discussed in sect. 4. Finally, we give a summary of our
work in sect. 5. The appendix includes technical details
concerning the flavour matrix elements and G. ’t Hooft’s
instanton-induced interaction following refs. [20–22].

2 A relativistic quark model for mesons

In our approach, we treat the (constituent) quarks as
fundamental degrees of freedom for the description of
hadronic bound states. The resulting quark model is for-
mally covariant and relies basically on the instantaneous
Bethe-Salpeter equation. It has been reviewed in detail in
refs. [11,12] such that we can keep the following introduc-
tion rather compact before we turn to the strong-decay
matrix elements in the next section.

2.1 The instantaneous Bethe-Salpeter approach

In quantum field theory, a quark-antiquark bound state
with four-momentum P and mass M (M 2 = P 2) is de-
scribed by the Bethe-Salpeter equation for two fermions
(see [23]). In momentum space, this equation reads

χP (p) = − i SF
1 (
P

2
+ p)

×
[
∫

d4p′

(2π)4
K(P, p, p′)χP (p′)

]

SF
2 (−

P

2
+ p), (1)

where p is the relative four-momentum between the quark
and the antiquark, K denotes the infinite sum of their
irreducible interactions and the corresponding full Feyn-
man propagators are labeled by SF

1 and SF
2 , respectively.

The Bethe-Salpeter amplitude χP is defined in coordinate
space as the time-ordered product of the quark and the

antiquark field operator between the bound state |P 〉 and
the vacuum:

χPαβ(x1, x2) :=
〈

0
∣

∣T ψ1
α(x1)ψ̄

2
β(x2)

∣

∣ P
〉

= e−iP ·(x1+x2)/2

∫

d4p

(2π)4
e−ip·(x1−x2)χPαβ(p) ,

(2)

where α and β are multi-indices for the Dirac, flavour and
colour degrees of freedom which are omitted in the follow-
ing discussion. Since in general the interaction kernel K
and the full quark propagators SF

i are unknown quantities,
we make two (formally covariant) approximations:

– The propagators are assumed to be of the free form
SF
i = i( p/ − mi + iε )−1 with effective constituent-

quark massesmi that we consider as free parameters in
our model; thus, all dynamical self-interactions of the
(anti-)quarks are believed to be adequately parameter-
ized by a constant absorbed in the constituent masses.

– The interaction kernel shall only depend on the com-
ponents of p and p′ perpendicular to P , i.e. we as-
sume that K(P, p, p′) = V (p⊥P , p

′
⊥P ) with p‖P :=

(p · P/P 2)P and p⊥P := p − p‖P holds; therefore,
the interaction kernel in the meson rest frame with
PM = (M,~0) becomes independent of the variable
p‖PM

≡ p0 which is the reason for labelling this as-
sumption the “instantaneous approximation”.

Integrating in the bound-state rest frame over the rel-
ative energy p0 and introducing the equal-time amplitude

(or Salpeter amplitude) Φ(~p ) :=
∫

dp0

2π χ
P (p0, ~p )|P=(M,~0),

we end up with the Salpeter equation (see [24]) which
constitutes the basic equation of our model:

Φ(~p ) = + Λ−1 (~p )γ
0

×
[
∫

d3p′

(2π)3
V (~p, ~p ′)Φ(~p ′)

M + ω1 + ω2

]

γ0Λ+
2 (−~p )

− Λ+
1 (~p )γ

0

×
[
∫

d3p′

(2π)3
V (~p, ~p ′)Φ(~p ′)

M − ω1 − ω2

]

γ0Λ−2 (−~p ) . (3)

Here, Λ±i (~p ) = 1
2 ± γ0(~γ · ~p + mi)/2ωi are projectors

on positive- and negative-energy solutions of the Dirac
equation and ωi =

√

~p 2 +m2
i denotes the kinetic energy

of the quarks. The simultaneous calculation of the meson
massesM and the Salpeter amplitudes Φ results by solving
the corresponding eigenvalue problem of eq. (3) with an
adequate potential ansatz (see [9,11] for further details).

The calculation of transition matrix elements for de-
cays or scattering processes can be done in the Mandel-
stam formalism (see [25]). To this end, the full Bethe-
Salpeter amplitude χP (p) depending on the relative four-
momentum p has to be known. On the mass shell of the
bound state, it can be reconstructed from the Salpeter
amplitude Φ(~p ) in a covariant manner. Let us there-
fore first define the meson-quark-antiquark vertex func-
tion ΓP (p) := [SF

1 (P/2 + p)]−1χP (p)[SF
2 (−P/2 + p)]−1 as
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the amputated Bethe-Salpeter amplitude. Starting with
the corresponding amputated Bethe-Salpeter equation,
the vertex function in the meson’s rest frame can be com-
puted from the three-dimensional Salpeter amplitude by

Γ (~p ) := ΓP (p)|P=(M,~0) = −i
∫

d3p′

(2π)3
V (~p, ~p ′)Φ(~p ′) . (4)

Due to the covariance of this procedure, we can finally
calculate the Bethe-Salpeter amplitude for any on-shell

momentum P ′ = (P ′0,
~P ′) of the bound state by perform-

ing a pure boost Λ according to

χP
′

(p) = SΛ χP (Λ−1p) S−1Λ

with

χP (p) = χP (p0, ~p )

= SF
1 (
M

2
+ p0, ~p ) Γ (~p ) S

F
2 (−

M

2
+ p0, ~p ) , (5)

where SΛ denotes the corresponding transformation in
Dirac space and the boost is defined by ΛP = P ′ for
a total momentum P = (M,~0) in the rest frame of the
bound state.

2.2 Interactions, parameters and spectra

Up to now, we have not specified the interactions that we
will include in the instantaneous interaction kernel. From
phenomenological studies of QCD, one finds that a confin-
ing interaction is mandatory for a satisfying description of
low-energy hadrons and especially of their radially excited
states. Furthermore, it is clear that an additional inter-
action should be included in the discussion as a flavour-
dependent force is required at least in the sector with total
angular momentum J = 0. Our candidate for this residual
interaction will be ’t Hooft’s instanton-induced force (see
appendix B.1). Let us briefly comment on both types of
interactions:

– The confining interaction in coordinate space is mostly
parameterized as a linearly rising potential of the form
VC (r) = ac+ bc · r. Moreover, one also has to choose a
particular spinorial structure Γ ⊗ Γ for the confining
interaction that acts in Dirac space and is a priori
unknown.
Accordingly, the confining interaction in momentum
space acting on the Salpeter amplitude can be written
as

∫

d3p′

(2π)3
VC (~p, ~p ′)Φ(~p ′) =

∫

d3p′

(2π)3
ṼC

(

(~p− ~p ′)2
)

· ΓΦ(~p ′)Γ , (6)

where ṼC((~p − ~p ′)2) is the Fourier transform of the
linear potential VC(r) in coordinate space. Note that
the offset ac and the slope bc will be treated as free
parameters in our model.

– As has been shown in the framework of a non-
relativistic quark model (see [26,27]), the instanton-
induced interaction on the basis of the ideas of ’t Hooft
and others (see [20–22]) provides a remarkably good
explanation for the ground-state masses in the pseu-
doscalar sector; in a relativistic formulation, ’t Hooft’s
force also acts in the scalar meson sector.
In momentum space, the effective potential for the
instanton-induced interaction (abbr.: III) can be writ-
ten as

∫

d3p′

(2π)3
VIII (~p, ~p

′)Φ(~p ′) =

4G(g, g′)

∫

d3p′

(2π)3
RΛ (~p, ~p ′)

× (1I tr [Φ(~p ′)] + γ5 tr [γ5Φ(~p
′)]) , (7)

where Λ = ΛIII denotes the finite effective range of the
force and the regulator function is of Gaussian type,
i.e. it reads RΛ(~x) = exp(−|~x|2/Λ2)/(Λ

√
π)3 in con-

figuration space. The matrix G(g, g′) includes flavour-
dependent coupling constants g and g′; a summation
over flavour indices is implicitly understood (see ap-
pendix B.1 for more details). We will consider the ef-
fective range and the coupling constants of ’t Hooft’s
force as free parameters.

We have shown in refs. [11,12] that these assumptions
on the underlying interactions between the constituents
of the mesons produce a consistent picture of the com-
plete light-meson sector2. The parameters that we have
introduced in these former publications were summarized
in two sets denoted by “A” and “B”, respectively. In this
work, we will only refer to a unique parameter set for the
sake of clarity, namely model B; the specific numerical
values for the corresponding parameters are displayed in
table. 1. At this point, let us stress that we do not alter
these parameters which are uniquely fixed to the meson
mass spectrum (see [11,12]). In particular, there is no de-
gree of freedom left to modify, e.g., the pion wave func-
tion by special parametrizations. Thus, the following re-
sults on strong-decay widths can be considered as (quasi)
parameter-free predictions insofar as only the three-body

’t Hooft coupling g
(3)
eff has to be fixed to a selected decay

with Ji = 0 (i = 1, 2, 3); this particular coupling con-
stant appears here for the first time in our model (see
also sect. 4.1). However, we do not aim at a high-precision
prediction of strong-decay widths with our approach; in-
stead, we consider this work merely as a global overview
including qualitative as well as quantitative features and
thus providing a reliable framework for future efforts in
this field.

In refs. [11,12], we have thoroughly discussed our
results on the mass spectra in the light-meson sector.

2 Note that a similar model for baryons described a qqq states
has been presented in refs. [28–30] by U. Löring et al. ; the au-
thors also use the instantaneous Bethe-Salpeter equation and
adopt a confining force plus a residual instanton-induced in-
teraction.
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Table 1. The parameters of the confinement force, the ’t Hooft
interaction and the constituent-quark masses in this work; the
particular values of this parameter set correspond to model
B first presented and dicussed in refs. [11,12]. Note that the

three-body ’t Hooft coupling g
(3)

eff appears in this work for the
first time; it has been adjusted to the experimental width of
the decay K∗

0 → Kπ.

Parameter This work

g [GeV−2] 1.62
’t Hooft g′ [GeV−2] 1.35

interaction g
(3)

eff [GeV−5] 71.4
ΛIII [fm] 0.42

Constituent- mn [MeV] 380
quark masses ms [MeV] 550

Confinement ac [MeV] −1135
parameters bc [MeV/fm] 1300

Spin structure Γ ⊗ Γ 1
2
(1I⊗ 1I− γµ ⊗ γµ − γ5 ⊗ γ5)

Concerning the ground states, we obtained an excellent
description of the well-known Regge trajectories up to the
highest angular momenta. The combination of the par-
ticular spinorial structure of the confinement force in our
model and the effects of ’t Hooft’s instanton-induced in-
teraction provides very good results for the pseudoscalar
mass spectrum; concerning the scalar sector, we observe
a plausible classification of qq̄ mesons even for the first
excited states (see [12] for details). In general, the ground
states as well as the radial excitations in the isovector, iso-
dublet and isoscalar sectors are reasonably well described
with the parameters given in table 1 such that we consider
our calculation of the complete light-meson mass spectrum
as a good starting point for the study of the strong decays
of these bound states.

3 The transition matrix element

For the description of the decay of an initial meson
with four-momentum P1 into two final mesons with four-
momenta P2 and P3, respectively, we consider the transi-
tion matrix element

TP1→P2P3
=

〈

P2 P3
∣

∣ T
∣

∣ P1
〉

. (8)

As we will show in the following, the so-called Mandel-
stam formalism (see [25]) allows for the calculation of any
dynamical bound-state observable from the corresponding
Bethe-Salpeter amplitudes.

3.1 The six-point Green’s function

The decay of one initial meson into two final mesons pro-
ceeds via an interaction of six (anti-)quarks. Let us there-
fore define the corresponding six-point Green’s function in

coordinate space according to

G
(6)
αα′,ββ′,γγ′(x1, x2, y1, y2, z1, z2) :=

〈

0
∣

∣T Ψα′(y1)Ψ̄β′(y2)Ψγ′(z2)Ψ̄γ(z1)Ψβ(x2)Ψ̄α(x1)
∣

∣ 0
〉

.

(9)

For the following discussion, it is helpful to introduce fur-
thermore the four-point Green’s function

G
(4)
α1α,β1β

(x′1, x
′
2, x1, x2) :=

−
〈

0
∣

∣T Ψα1
(x′1)Ψ̄β1

(x′2)Ψβ(x2)Ψ̄α(x1)
∣

∣ 0
〉

, (10)

as well as the eight-point Green’s function given by

G
(8)
α′α′1,β

′β′1,γγ1,γ′γ′1
(y1, y2, z1, z2, y

′
1, y

′
2, z

′
1, z

′
2) :=

−
〈

0
∣

∣T Ψα′(y1)Ψ̄γ(z1)Ψγ1
(z′1)Ψ̄α′1(y

′
1)

×Ψγ′(z2)Ψ̄β′(y2)Ψβ′1(y
′
2)Ψ̄γ′1(z

′
2)

∣

∣ 0
〉

. (11)

Here, the full Heisenberg field operators Ψ and Ψ̄
are labeled with multi-indices α, β, . . . refering to Dirac,
flavour and colour space. In these definitions of the n-
point Green’s functions G(n), the symbol T denotes the
time-ordering operator.

In order to connect the full six-point Green’s function
with the bound-state Bethe-Salpeter amplitudes of the
three mesons, we first decompose G(6) into a kernel K(6)

which is irreducible with respect to the four-point Green’s
function G(4) of the incoming q̄q pair and the eight-point
Green’s function G(8) of the two outgoing q̄q pairs:

G
(6)
αα′,ββ′,γγ′(x1, x2, y1, y2, z1, z2) =
∫

d4x′1d
4x′2d

4y′1d
4y′2d

4z′1d
4z′2

×G(8)
α′α′1,β

′β′1,γγ1,γ′γ′1
(y1, y2, z1, z2, y

′
1, y

′
2, z

′
1, z

′
2)

×K(6)
α1α′1,β1β′1,γ1γ′1

(x′1, x
′
2, y

′
1, y

′
2, z

′
1, z

′
2)

×G(4)
α1α,β1β

(x′1, x
′
2, x1, x2) . (12)

This equation defines the six-point kernel K(6); in fig. 1,
we give a diagrammatical representation of this decompo-
sition.

The four-point Green’s function G(4) describes the
propagation of a qq̄ pair within the space-time region
where it is created from and annihilated into the vacuum.
As we want to calculate the decay of a meson, we are in-
terested in those contributions to G(4) that originate from
qq̄ bound states denoted by |Pi〉. Here and in the follow-
ing, Pi and Mi denote the four-momentum and the mass
of the bound state “i” with P 2

i =M2
i ; the Fock states |Pi〉

are normalized according to

〈

Pi
∣

∣ P ′i
〉

= (2π)3 2ωPi
δ(~Pi − ~P ′i )

with ωPi
:= P 0

i =

√

M2 + ~P 2
i . (13)

Assuming the time-ordering x1
0, x2

0 < x′1
0
, x′2

0
, a com-

plete set of these states can be inserted into G(4) such that
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Fig. 1. Decomposition of the six-point Green’s function G(6)

into the corresponding irreducible kernel K(6).

the bound-state contribution to the four-point Green’s
function is given by

G̃
(4)
α1α,β1β

(x′1, x
′
2, x1, x2) :=

−
∫

dP̃1
〈

0
∣

∣TΨα1
(x′1)Ψ̄β1

(x′2)
∣

∣P1
〉

×
〈

P1
∣

∣T Ψβ(x2)Ψ̄α(x1)
∣

∣0
〉

=

−
∫

dP̃1 χ
P1

α1β1
(x′1, x

′
2)χ̄

P1

βα(x1, x2) (14)

with the definition dP̃ := d3P/((2π)32ωP ). Note that we
have used the definition of the Bethe-Salpeter amplitude
χ according to eq. (2); an analogous definition holds for
the adjoint amplitude χ̄.

In order to express also the eight-point Green’s func-
tion G(8) by Bethe-Salpeter amplitudes alone, we make
the following fundamental approximation: we assume that
the two outgoing mesons do not interact with each other,
i.e. our ansatz relies on the complete neglect of any final-
state interaction. Then it is allowed to decompose the
eight-point Green’s function into a product of two four-
point Green’s functions according to G(8) ≈ G(4) · G(4).
Considering again only the bound-state contributions to

four-point Green’s functions, we end up with

G̃
(8)
α′α′1,β

′β′1,γγ1,γ′γ′1
(y1, y2, z1, z2, y

′
1, y

′
2, z

′
1, z

′
2) :=

−
∫

dP̃2 dP̃3 χ
P2

γ′β′(z2, y2)χ
P3

α′γ(y1, z1)

×χ̄P2

β′1γ
′
1
(z′2, y

′
2)χ̄

P3

γ1α′1
(y′1, z

′
1) . (15)

Inserting G̃(4) and G̃(8) into the defining equation for
the irreducible interaction kernel K(6), see eq. (12), we
find the following result for the bound-state contributions
to the six-point Green’s function:

G̃
(6)
αα′,ββ′,γγ′(x1, x2, y1, y2, z1, z2) :=
∫

dP̃1 dP̃2 dP̃3

∫

d4x′1 d4x′2 d4y′1 d4y′2 d4z′1 d4z′2

×χP2

γ′β′(z2, y2)χ
P3

α′γ(y1, z1) χ̄
P2

β′1γ
′
1
(z′2, y

′
2)χ̄

P3

γ1α′1
(y′1, z

′
1)

×K(6)
α1α′1,β1β′1,γ1γ′1

(x′1, x
′
2, y

′
1, y

′
2z
′
1, z

′
2)

×χP1

α1β1
(x′1, x

′
2)χ̄

P1

βα(x1, x2) . (16)

This expression describes the decay of one initial meson
into two non-interacting mesons; we will now use it to
connect the S-matrix element with the irreducible kernel
K(6).

3.2 The S-matrix element

The S-matrix operator transforms free states at time
t = −∞ into free states at time t = +∞. In terms of
a given interaction Lagrangian LI, the S-matrix element
SP1→P2P3

for an initial meson with momentum P1 decay-
ing into two outgoing mesons with momenta P2 and P3
can be written as

SP1→P2P3
=

〈

P2P3

∣

∣

∣

∣

∣

∞
∑

k=0

ik

k!

∫

d4y1 · · · d4ykT LI(y1) · · · LI(yk)
∣

∣

∣

∣

∣

P1

〉

.

(17)

Here, all fields within LI are taken as free fields and in
normal order. The contribution of this matrix element to
the full six-point Green’s function G(6) defined in eq. (9)
is given by the expression

G̃
(6)
αα′,ββ′,γγ′(x1, x2, y1, y2, z1, z2) =

∫

dP̃1dP̃2dP̃3
〈

0
∣

∣T Ψα′(y1)Ψ̄β′(y2)Ψγ′(z2)Ψ̄γ(z1)
∣

∣P2P3
〉

×
〈

P2P3

∣

∣

∣

∣

∣

∞
∑

k=0

ik

k!

∫

d4y1 · · · d4ykT LI(y1) · · · LI(yk)
∣

∣

∣

∣

∣

P1

〉

×
〈

P1
∣

∣T Ψβ(x2)Ψ̄α(x1)
∣

∣ 0
〉

, (18)

where now all fields are free fields taken at x1
0, x2

0 →
−∞ and y1

0, y2
0, z1

0, z2
0 → +∞. As the state |P2P3〉 is a
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product of two non-interacting meson states, i.e. |P2P3〉 =
|P2〉|P3〉, the field operators with the quantum numbers
α′, γ act (by convention) only on the state |P3〉 and the
field operators labeled with β′, γ′ act only on the state
|P2〉. Thus we can write

〈

0
∣

∣ T Ψα′(y1)Ψ̄β′(y2)Ψγ′(z2)Ψ̄γ(z1)
∣

∣ P2P3
〉

=

−χP3

α′γ(y1, z1) χ
P2

γ′β′(z2, y2) (19)

and therefore eq. (18) becomes

G̃
(6)
αα′,ββ′,γγ′(x1, x2, y1, y2, z1, z2) =

∫

dP̃1dP̃2dP̃3 χP2

γ′β′(z2, y2)χ
P3

α′γ(y1, z1)

×SP1→P2P3
χ̄P1

βα(x2, x1) . (20)

By comparing this expression with eq. (16), the con-
nection between the S-matrix element SP1→P2P3

, the irre-
ducible kernel K(6) and the Bethe-Salpeter amplitudes of
the three mesons can be written according to

SP1→P2P3
= −

∫

d4x′1d
4x′2d

4y′1d
4y′2d

4z′1d
4z′2

× tr
[

χ̄P2(z′2, y
′
2) χ̄

P3(y′1, z
′
1)K

(6)

×(x′1, x′2, y′1, y′2, z′1, z′2) χP1(x′1, x
′
2)
]

; (21)

here, we have abbreviated the full contraction of all multi-
indices by the trace symbol tr . In the following, we will
specify the particular interactions summarized in the six-
point kernel K(6).

3.3 Approximation of the interaction kernel

The uncontracted term of the ’t Hooft Lagrangian ∆Leff
(see appendix B) yields an explicit expression for an effec-
tive six-quark interaction Lagrangian LI = L(3) given in
eq. (B.3). Up to the first order in the instanton coupling

g
(3)
eff , the S-matrix element SP1→P2P3

in eq. (17) consists
of two terms:

SP1→P2P3
=

〈

P2P3
∣

∣ P1
〉

+
〈

P2P3
∣

∣ i

∫

d4y L(3)(y)
∣

∣ P1
〉

+O
(

(g
(3)
eff )2

)

. (22)

The first term is of order O(1) in the coupling of the six-
quark interaction, i.e. the ’t Hooft three-body interaction
via L(3) is absent and the decay passes exclusively over the
propagation of non-interacting quarks. The second term is

of order O(g(3)eff ), i.e. the quarks of the three mesons once
interact via L(3).

To find the corresponding interaction kernel, we con-
sider the six-point Green’s function, see eq. (9), up to this
order; it thus can be decomposed into two terms accord-

ings to G(6) = G
(6)
0 + G

(6)
1 + . . .. In the following, the

(anti-)quark fields Ψ(Ψ̄) are free fields in the sense that

they are out of the interaction region. By using Wick’s
theorem and after inserting several δ-distributions, we get
for the lowest-order term the expression

G
(6)
0 αα′,ββ′,γγ′(x1, x2, y1, y2, z1, z2) :=

〈

0
∣

∣T Ψα′(y1)Ψ̄β′(y2)Ψγ′(z2)Ψ̄γ(z1)Ψβ(x2)Ψ̄α(x1)
∣

∣0
〉

=

−
∫

d4x′1d
4x′2d

4y′1d
4y′2d

4z′1d
4z′2 δα1α′δβ1β′δγ1γ′

×δ(x′1 − y′1) δ(x′2 − y′2) δ(z′1 − z′2)
×δ(y′1 − y1) δ(y′2 − y2) δ(z′2 − z2)
×
〈

0
∣

∣T Ψα1
(x′1)Ψ̄α(x1)

∣

∣ 0
〉 〈

0
∣

∣T Ψβ(x2)Ψ̄β1
(x′2)

∣

∣ 0
〉

×
〈

0
∣

∣T Ψγ1
(z′1)Ψ̄γ(z1)

∣

∣ 0
〉

+ crossed term .

The crossed term follows from the first term by exchanging
(z2, γ

′)←→(y1, α
′) and (z1, γ)←→(y2, β

′); see also figs. 1
and 2.

Now we approximate the full Feynman propagators
by the free propagators with effective constituent-quark
masses, consistent with the approximation done in the
Bethe-Salpeter equation (see sect. 2.1). In coordinate
space, they satisfy the relations

(i 6∂x −m)αα′S
F
α′β(x, x

′) = +iδ(x− x′)δαβ (23)

and

SF
αα′(x, x

′)(i 6∂x′ +m)α′β = −iδ(x− x′)δαβ . (24)

Inserting these relations into eq. (23) and using
SF
αα′(x, x

′) := 〈0 |T Ψα(x)Ψ̄α′(x
′) | 0〉, we get for the quark

loop part G
(6)
0 of the six-point Green’s function the fol-

lowing result:

G
(6)
0 αα′,ββ′,γγ′(x1, x2, y1, y2, z1, z2) =

−i
∫

d4x′1d
4x′2d

4y′1d
4y′2d

4z′1d
4z′2

×
[

SF
1 (y1, y

′
1)
(

− i 6∂y′1 −m1

)

SF
1 (x

′
1, x1)

]

α′α
δ(x′1 − y′1)

×
[

SF
2 (x2, x

′
2)
(

+ i 6∂y′2 −m2

)

SF
2 (y

′
2, y2)

]

ββ′
δ(x′2 − y′2)

×
[

SF
3 (z2, z

′
2)

(

− i 6∂z′2 −m3

)

SF
3 (z

′
1, z1)

]

γ′γ
δ(z′2 − z′1)

+ crossed term . (25)

Here, the constituent-quark masses of the incoming quark
and antiquark are denoted by m1 and m2, respectively;
the constituent-quark mass of the third quark is labeled
by m3.

Now we want to determine the irreducible six-point
kernel K(6) introduced in eq. (12). In this defining equa-
tion, we now approximate the four-point Green’s func-

tion by its free part and adopt G
(4)
α1α,β1β

(x′1, x
′
2, x1, x2) ≈

SF
α1α(x

′
1, x1)S

F
ββ1

(x2, x
′
2). Accordingly, we insert this four-

point Green’s function in the decomposition G(8) ≈ G(4) ·
G(4) of the eight-point Green’s function, since we neglect
all effects originating in final-state interactions of the out-
going mesons. With this assumptions, we can read off the
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× g
(3)
eff δJ1,0δJ2,0δJ3,0

Fig. 2. Diagrammatic illustration of the decay of one meson with four-momentum P1 into two other mesons with four-momenta
P2 and P3 via the full transition matrix element including quark loops and the instanton-induced six-quark vertex; note that the
latter only contributes if all mesons in the decay have zero angular momentum. The quark loop diagram with the two outgoing
mesons exchanged as well as the cyclic permutated diagrams of the instanton-induced transitions are suppressed in this figure.

lowest-order part of the six-point kernel defined in eq. (12)
as follows:

K
(6)
0 α1α′1,β1β′1,γ1γ′1

(x′1, x
′
2, y

′
1, y

′
2, z

′
1, z

′
2) =

−i δ(x′1 − y′1) δ(x′2 − y′2) δ(z′2 − z′1)
(

− i 6∂y′1 −m1

)

α′1α1

×
(

+ i 6∂y′2 −m2

)

β1β′1

(

− i 6∂z′2 −m3

)

γ′1γ1

+ crossed term . (26)

The next term G
(6)
1 in the six-point Green’s function

is of order O(g(3)eff ) in the instanton-induced interaction;
starting with its definition

G
(6)
1 αα′,ββ′,γγ′(x1, x2, y1, y2, z1, z2) :=

i

∫

d4y
〈

0
∣

∣T Ψα′(y1)Ψ̄β′(y2)Ψγ′(z2)

×Ψ̄γ(z1)Ψβ(x2)Ψ̄α(x1) L(3)(y)
∣

∣ 0
〉

, (27)

it can be derived in analogy to the pure quark loop part.
Using the antisymmetry of the operator OFSC defined in
eq. (B.6) in appendix B.2, the result for the interaction
kernel reads

K
(6)
1 α1α′1,β1β′1,γ1γ′1

(x′1, x
′
2, y

′
1, y

′
2, z

′
1, z

′
2) =

−i 36 g
(3)
eff · OFSC

β1α′1γ
′
1α1γ1β′1

×
∫

d4y δ(x′1 − y) δ(x′2 − y) δ(y′1 − y)

× δ(y′2 − y) δ(z′1 − y) δ(z′2 − y) , (28)

where we have inserted the explicit expression for the
instanton-induced interaction Lagrangian L(3) (see ap-
pendix B); the numerical factor arises from 36 identical

terms found by performing Wick’s theorem to G
(6)
1 . By

comparison of G(6) = G
(6)
0 + G

(6)
1 up to order O(g(3)eff )

with the defining eq. (12) for the irreducible interaction

kernel, we thus find K(6) = K
(6)
0 + K

(6)
1 in the same

approximation.

3.4 The transition matrix element

The S-matrix element as given in eq. (21) up to first or-

der in the three-body coupling constant g
(3)
eff follows from

insertion of the irreducible six-point kernel in the same or-
der. To obtain a more compact notation, we relabel some
integration variables, use again the trace symbol tr for
the contraction of all multi-indices and finally find

SP1→P2P3
=

i

∫

d4x d4y d4z tr
[

χ̄P2(z, y)
(

i 6∂z +m3

)

χ̄P3(x, z)

×
(

i 6∂x +m1

)

χP1(x, y)
(

i 6∂y −m2

)

]

+i

∫

d4x d4y d4z tr
[

χ̄P3(z, x)
(

i 6∂z +m3

)

χ̄P2(y, z)

×
(

i 6∂y +m1

)

χP1(y, x)
(

i 6∂x −m2

)

]

+ i 36 g
(3)
eff

×
∫

d4y tr
[

OFSC
(

χ̄P3(y, y)⊗ χ̄P2(y, y)⊗ χP1(y, y)
)

]

.

(29)

We now perform a Fourier transformation into mo-
mentum space and use the well-known general relation
between the transition operator T and the S-matrix op-
erator given by Sfi = δfi + i(2π)4δ(Pf − Pi)〈f |T |i〉 with
|i〉 and |f〉 initial and final state, respectively. Finally, we
find the following transition amplitude up to first order
in the coupling of ’t Hooft’s instanton-induced three-body
interaction:

TP1→P2P3
=

〈

P2P3
∣

∣ T | P1
〉

= T loop
P1→P2P3

+T ’t Hooft
P1→P2P3

+O
(

(g
(3)
eff )2

)

(30)
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with T loop
P1→P2P3

:=

∫

d4p

(2π)4
tr
[

Γ̄P2(p− P3
2
)SF

3 (
P2 − P3

2
+ p)Γ̄P3

×(p+ P2
2
)SF

1 (
P1
2

+ p)ΓP1(p)SF
2 (−

P1
2

+ p)
]

+

∫

d4p

(2π)4
tr
[

Γ̄P3(p− P2
2
)SF

3 (
P3 − P2

2
+ p)Γ̄P2

×(p+ P3
2
)SF

1 (
P1
2

+ p)ΓP1(p)SF
2 (−

P1
2

+ p)
]

and T ’t Hooft
P1→P2P3

:=

36 g
(3)
eff tr

[

OFSC
(

3
⊗

i=1

∫

d4pi
(2π)4

XPi

i (pi)
)

]

.

The trace runs over colour, flavour and spin indices; by
definition, momentum conservation is fulfilled, i.e. P1 =
P2 + P3 holds. In the quark loop part, we have ex-
pressed the Bethe-Salpeter amplitudes by the correspond-
ing vertex functions according to their definition given
in sect. 2.1. Note that we have introduced X1 = χ and
X2 = X3 = χ̄ in order to distinguish properly the Bethe-
Salpeter amplitude and its adjoint.

3.5 Calculation of the decay width

After we have derived the transition matrix element
TP1→P2P3

for the mesonic strong decay M1 → M2M3,
we will finally give the standard formula for the calcula-
tion of the partial decay width:

ΓM1→M2M3
=

k

8πM2
1

∑

m1

1

2J1 + 1

×
∑

m2,m3

∣

∣

∣

〈

P2m2 P3m3 | T | P1m1

〉

∣

∣

∣

2

; (31)

here, k2 = (P 0
2 )

2 −M2
2 = (P 0

3 )
2 −M2

3 in the rest frame

of the incoming meson (i.e. P1 =
(M1

~0

)

) is a kinematical
factor, mi := mJi

(i = 1, 2, 3) are the magnetic quantum
numbers and P1 = P2 + P3 holds due to four-momentum
conservation. In appendix A, we comment on the flavour
matrix element and on the particular factors correspond-
ing to the charge multiplicities.

In fig. 2, we summarize the results of this section in a
diagrammatical representation. As we have shown in the
framework of the Mandelstam formalism, the pure quark
loop term contributes to all strong two-body decays. In
contrast to this general mechanism, the instanton-induced
decay via the three-body vertex of the ’t Hooft Lagrangian
only takes place if all mesons in the decay are either of
scalar or pseudoscalar type, i.e. if Ji = 0 (i = 1, 2, 3)
holds. In this case, we expect the interference between the
quark loop terms and the instanton-induced contributions
to modify the results on the strong-decay widths in our
calculation in a characteristical fashion.

Let us make a final remark before we study in detail the
numerical results concerning the strong meson decays. It
is obvious from fig. 2 that the quark loop part satisfies the
well-known Zweig rule (or OZI rule). For the instanton-
induced decay mechanism, the situation is different if and
only if a flavour singlet participates in the decay under
consideration. In order to see this, we write down the ex-
plicit flavour dependence of this interaction (see also [13,
31,43]) as

tr
[

PF
1 (Λ

M1 ⊗ ΛM2 ⊗ ΛM3)
]

=

1

6
εijkεi

′j′k′ΛM1

ii′ Λ
M2

jj′ Λ
M3

kk′ . (32)

Here, ΛMi (i = 1, 2, 3) is the flavour part of Bethe-
Salpeter amplitude for the meson Mi and the whole ex-
pression originates in the term T ’t Hooft

P1→P2P3
of eq. (30). Note

that PF1 projects onto singlet states in flavour space; this
projector is part of the general operator OFSC defined in
eq. (B.6) in appendix B.2. The expression in eq. (32) shows
that the instanton-induced six-quark interaction is com-
pletely antisymmetric in flavour space. With the help of
the Cayley-Hamilton theorem, the flavour dependence can
be rewritten as

tr
[

PF
1 (Λ

M1 ⊗ ΛM2 ⊗ ΛM3)
]

=

1

6
tr
[

ΛM1ΛM2ΛM3 + ΛM1ΛM3ΛM2

]

−1

6

(

tr
[

ΛM1

]

tr
[

Λ̂M2Λ̂M3

]

+ cycl. perm.
)

, (33)

where Λ̂Mi denotes the traceless part of ΛMi (see [13,
31]). Here, the first term has the flavour dependence of
the usual quark loop diagrams —see fig. 2— such that this
interaction gives an additional contribution to the conven-
tional Zweig-rule–allowed transitions for decays involving
only Ji = 0 mesons (i = 1, 2, 3). The flavour dependence
of the second term leads to a minimal violation of the OZI
rule: only if tr [ΛMi ] does not vanish, i.e. if and only if a
flavour singlet participates, there is an additional contri-
bution to the conventional decay mechanism beyond the
Zweig-rule–allowed processes.

4 Results and discussion

As we have already mentioned in sect. 2.2, we have calcu-
lated the masses of light mesons in two different parameter
sets for the confinement force (see [11,12]). Both mod-
els yielded an excellent description of the experimental
ground-state Regge trajectories, while the masses of the
pseudoscalar ground-state nonet were very well described
by using ’t Hooft’s force as an additional residual interac-
tion. However, we found the radial-excitation spectrum as
well as the complete scalar-meson spectrum considerably
different in both models. Especially the latter sector needs
further investigations beyond purely spectroscopical con-
siderations in order to understand the nature of the scalar
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mesons. The study of hadronic decays presented in this
contribution may help for a more serious interpretation
of these mesons. However, the calculation of strong-decay
widths for the complete resonance spectrum is of course
first of all important in its own right.

In this publication, we study strong two-body decays
neglecting any final-state interaction. We are aware that
final-state interaction could strongly modify some of the
results presented here, especially in the scalar sector. How-
ever, it is unclear how to implement such effects in the
framework of our quark model in a consistent manner.
Nevertheless, it is reasonable to assume that the present
calculation at least captures the main effects for the
strong-decay processes. Under this assumption, the tran-
sition matrix element for the decay of one initial meson
M1 with four-momentum P1 into two outgoing mesons
M2 and M3 with four-momenta P2, P3 (for the bound-
states masses, M2

i = P 2
i holds) is evaluated up to first

order in the effective coupling of the instanton-induced
three-body interaction L(3), see eqs. (22) and (30).

In the lowest-order term, the instanton-induced inter-
action is absent and the decay passes over the propa-
gation of non-interacting quarks forming a simple loop.
These transitions are Zweig-rule allowed and they always
contribute, independently of the quantum numbers of the
three mesons that are involved in the decay under consid-
eration. The next term in the transition matrix element
of eq. (30) is of order O(g(3)eff ), i.e. the quarks of the three
mesons once interact via the instanton-induced interaction
described by L(3) (see also appendix B.2). These transi-
tions only contribute if all three mesons have vanishing
total angular momentum Ji = 0 (i = 1, 2, 3) such that
the decays of other than scalar and pseudoscalar mesons
are not influenced by this interaction. The transition am-
plitude generated by L(3) contains a Zweig-rule–violating
part if a flavour singlet meson is involved in the decay
under consideration3.

At this point, a short remark on our selection of the
decays in our following discussion is in order4. In general,
we only quote our results on particular decay widths if it
can either be compared with an experimental value or with
data obtained in the framework of the 3P0 model. For the
latter reference, we usually quote the results of T. Barnes

3 This hierarchy of decay mechanisms in our approach sug-
gests a clear indication on whether or not the instanton-
induced effects contribute to a specific decay. In all tables sum-
marizing our numerical results, we thus indicate by the symbol
“•” in the column “III” if the three-body ’t Hooft interaction
plays a role, i.e. if we expect an interference of the ampli-
tudes originating both in quark loop diagrams and instanton-
induced decay mechanisms. Furthermore, we point out by an
additional symbol “•” in the column “ZRV” whether Zweig-
rule–violating processes contribute to the decay width or not;
as we have shown above, effects beyond the OZI-rule–allowed
diagrams are expected if isoscalar mesons participate in the
instanton-induced decay process.

4 Note that we denote the final state “KK̄+c.c.” by “KK”;
analogously, we abbreviate the “KK̄∗ + c.c.” final state with
“KK∗” for simplicity.

et al. published in refs. [6,7]; we refer to R. Bonnaz and
B. Silvestre-Brac with respect to the decays of non-nn̄
mesons (see [8])5.

Let us give also a brief comment on two recently pub-
lished works: In [32], strong decays of light vector mesons
are studied within a covariant approach combining Bethe-
Salpeter and Dyson-Schwinger equations. For the related
coupling constants the authors find good agreement with
the experimental results; note that only quark loops con-
tribute to their calculated widths. A further interesting
review (see [33]) describes 3P0 model results for strange
quarkonia. As most of the strong-decay widths in this pa-
per are parametrized in terms of a singlet-triplet mixing
angle, which is not uniquely fixed a priori by experiment,
we will not discuss their results in more detail.

4.1 Fixing the three-body coupling constant

Before we discuss the numerical results for the various
decay widths, we shall briefly comment on our choice

for the value of the coupling constant g
(3)
eff which gov-

erns the strength of the instanton-induced six-quark ver-
tex. As we show in fig. 3a, we fix this free parameter
at the width for the decay K∗0 (1430) → Kπ, namely
Γexp = 274 ± 37 MeV. Compared to other decays in
which all participating mesons have total angular momen-
tum Ji = 0, this width is quite well-known experimentally
which suggests to fix the free parameter by this number.
However, the uncertainty is still large such that we cannot

be sure to have optimally fixed g
(3)
eff .

Moreover, the parameter set used in this work has
the special feature that —at first glance— underestimates
the masses of the scalar bound states such as the K∗0 -
mesons; note that nevertheless our results agree excel-
lently with the K-matrix analyses done by V.V. Aniso-
vich and co-workers (see [34] as well as our discussion
in [12]). Thus, the particular phase space factor in the
decay K∗0 (1430)→ Kπ is not well described in our model
as the scalar kaon mass is roughly 200 MeV smaller than
compared to the standard value of the PDG (see [14]). We

have, however, decided to fix the ’t Hooft coupling g
(3)
eff at

the experimental value for the decay K∗0 (1430) → Kπ.
Our approach is justified by the observation that our
choice simultaneously allows for a correct description of
the decay K∗0 (1950) → Kπ, see fig. 3(b). In particular, it
is impressing to see how the instanton-induced contribu-
tion to the decay widths in these examples raises dramat-
ically the pure quark loop contribution of only a few MeV
up to the experimental values of several hundred MeV.

5 To be precise, we refer to their parameter set labeled
“NRAL” with a momentum-dependent 3P0-vertex including
instanton-induced as well as tensor-force effects. For outgoing
mesons with broad widths (> 50 MeV), the authors introduced
a modified mechanism for the description of this situation; note
that this approach has severe problems due to the inherent vi-
olation of Galilei invariance of the 3P0 model.
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(a) K∗0 (1430)→ Kπ (b) K∗0 (1950)→ Kπ
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Fig. 3. The widths of the decays (a) K∗
0 (1430)→ Kπ and (b) K∗

0 (1950)→ Kπ and their dependence on the coupling constant

g
(3)

eff of ’t Hooft’s three-body force due to instanton effects; see text for more details. The shaded bands denote the experimental

error bars according to the PDG (see [14]); the vertical dashed lines mark our choice for the ’t Hooft coupling g
(3)

eff .

4.2 Decays of ρJ-mesons

In table 2, we have listed our result concerning the strong
two-body decays of isovector ρJ -mesons; in particular,
we study the ρ(770), ρ(1450), ρ(1700) and ρ3(1690). We
shall note that the radial-excitation pattern in this sec-
tor is slightly different to what is usually assumed for the
ρ-mesons: while the masses of the ρ(770) and ρ(1450) are
quite well described in our approach, we underestimate
the ρ(1700) mass by roughly ≈ 200 MeV (see [11]). Note
that our calculation implies that the ρ(770) and ρ(1700)
are dominantly S-wave mesons, while the ρ(1450) and
ρ3(1690) are dominantly D-wave mesons (see appendix
of ref. [35] for comparison).

Comparing our result for the ρ(770)→ ππ decay with
experiment and the 3P0 model, we see that both theo-
retical approaches underestimate the partial-decay width
Γexp ≈ 150 MeV such that the strong two-body decay
mode alone cannot saturate the total ρ(770) width in both
approaches. This is a first hint that the neglect of final-
state interaction in our ansatz might spoil our results in
certain sectors although we use a completely relativistic
formula for the calculation of the quark loop diagram.

The various decay modes of the ρ(1450) are in general
very small in our approach compared to the 3P0 model.
However, a look at the experimental limits in this sec-
tor leads to the conclusion that our results for the decays
ρ(1450) → ωπ/ρη/KK are at least consistent with these
rough limits while the results of ref. [7] strongly overesti-
mate the related partial widths. For the ρ(1700), an analo-
gous statement holds: the widths calculated in the frame-
work of our model are very small compared to the 3P0 —
however, they do not contradict the experimental limit,

e.g. for the decay ρ(1700)→ ρη with Γexp < 9.6 MeV. For
both radial ρ excitations, the total experimental width is
again significantly larger than the sum of the partial width
calculated in our approach.

For the strong decays of the ρ3(1690), we find that
especially the ππ partial width is significantly too small.
This observation might be related to the fact that the de-
scription of the pion in the framework of our model is not
overall satisfying; as we have already noted in ref. [11], the
instantaneous approximation seems to be not well suited
for a deeply bound state such as the π-meson. For the
strong decays, the related wave function deformation leads
to a general underestimation of partial widths if one or two
pions are observed in the final state. As our calculated
widths for the decays ρ3(1690) → ρη/KK are plausible
compared to experiment as well as to the 3P0 model result,
this problem seems to be restricted to pionic final states
at the moment. In fact, the large ρ3(1690)→ ρρ width in
our framework is comparable with the 3P0 model.

4.3 Decays of πJ-mesons

The results of the strong πJ -meson decay are presented in
table 3; let us note that the masses of the π(1300), π(1800)
and π2(1670) are well described in our model (see [11]).

Again, we find that the calculated widths are signif-
icantly smaller than the results of the 3P0 model but
the experimental data are quite poor for the π(1300)
and π(1800) such that a detailed comparison is diffi-
cult. We note that we also find small widths for the de-
cays π(1800) → ρπ/KK∗ which have not been seen in
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Table 2. Results on strong two-body decays of (excited)
isovector ρJ -mesons. All widths are given in units of [MeV];
the experimental data are extracted from ref. [14]. The column
“III” denotes whether effects of the instanton-induced three-
body interaction are included (•) or not (◦). In the column
“ZRV”, we indicate whether Zweig-rule violation due to the
presence of isoscalar mesons in the instanton-induced mecha-
nism occurs (•) or not (◦).

Final Experimental 3P0 model This Included Included

state partial width (refs. [6,7]) work III ZRV

ρ(770) , Γ total
exp = 150.2± 0.8 MeV

ππ ≈ 150 79 42.9 ◦ ◦

ρ(1450) , Γ total
exp = 310± 60 MeV

ππ seen 74 2.37 ◦ ◦

ωπ < 6.2 122 0.00 ◦ ◦

ρη < 12.4 25 0.09 ◦ ◦

KK < 0.50 35 0.03 ◦ ◦

ρ(1700) , Γ total
exp = 240± 60 MeV

ππ seen 48 1.16 ◦ ◦

ωπ seen 35 1.58 ◦ ◦

ρη < 9.6 16 2.82 ◦ ◦

KK seen 36 1.99 ◦ ◦

ρ3(1690) , Γ total
exp = 161± 10 MeV

ππ 38± 3.2 59 0.82 ◦ ◦

ωπ 18.3± 7.0 19 2.92 ◦ ◦

ρη seen 2 4.10 ◦ ◦

KK 2.54± 0.45 9 6.37 ◦ ◦

ρρ – 71 55.6 ◦ ◦

experiment; here, the approach of ref. [7] seems to overes-
timate the partial widths.

At this point, a further remark concerning the con-
tributions of ’t Hooft’s six-quark interaction is in order.
As we have denoted it in table 3 in the columns “III”
and “ZRV”, the decays π(1800)→ f0(1370)π/f0(1500)π/
a0(980)η/KK

∗
0 not only include the simple quark loop

mechanism but also obtain a significant contribution by
the instanton-induced interaction. In general, the inter-
ference between both terms can either be constructive or
destructive. For the pion decays discussed in this section,
the interference is destructive and therefore lowers the re-
sulting partial widths compared to the pure quark loop
contribution.

Concerning the π2(1670) decays, we still find generally
too small widths; at least for the pion-free final stateKK∗,
we obtain a plausible result. Note that the 3P0 model gives
a vanishing partial width for the f0(1370)π decay mode in
contradiction to experiment; also for other final states,
the non-relativistic 3P0 ansatz is less accurate than often
claimed.

Table 3. Results on strong two-body decays of (excited)
isovector πJ -mesons. All widths are given in units of [MeV];
the experimental data are extracted from ref. [14]. For further
comments, see text and caption of table 2.

Final Experimental 3P0 model This Included Included

state partial width (ref. [7]) work III ZRV

π(1300) , Γ total
exp = 200 . . . 600 MeV

ρπ seen 209 2.57 ◦ ◦

π(1800) , Γ total
exp = 210± 15 MeV

ρπ not seen 31 0.34 ◦ ◦

ρω – 73 1.46 ◦ ◦

f0(1370)π seen 7 1.12 • •

f0(1500)π seen – 3.05 • •

f2(1270)π – 28 4.16 ◦ ◦

a0(980)η seen – 2.79 • •

KK∗
0 seen – 0.02 • ◦

KK∗ not seen 36 1.76 ◦ ◦

π2(1670) , Γ total
exp = 259± 11 MeV

ρπ 84±11 118 12.3 ◦ ◦

ρω 7.0±2.9 41 0.11 ◦ ◦

σπ 34±16 – 14.7 ◦ ◦

f0(1370)π 24±9 0 0.26 ◦ ◦

f2(1270)π 152±11 75 6.16 ◦ ◦

b1(1235)π < 0.93 0 0 ◦ ◦

KK∗ 11±4 30 5.18 ◦ ◦

4.4 Decays of ωJ- and φJ-mesons

In table 4, we summarize our results for the strong-decay
partial widths of the isoscalar ωJ - and φJ -mesons. Their
masses are quite well described in our Bethe-Salpeter
ansatz; note that —due to the lack of a mixing mecha-
nism for J 6= 0 mesons— the ωJ are purely nn̄ states,
while the φJ are purely ss̄ states in good agreement with
their experimental status. We assume the ω(1420) to be
the second radial nn̄ excitation in this sector as this meson
is considered as an S-wave state in ref. [7]; analogously,
we consider the φ(1680) to be the second radially excited
ss̄ state (see also the appendix of ref. [35]).

As we have already observed before, the total widths
of the ωJ -mesons cannot be saturated by the sum of
their two-body strong-decay widths alone; although there
in fact exist numerous other (predominantly electromag-
netic) decay modes (see [14]), this leads again to some in-
consistencies between our relativistic quark loop approach
and the results of the 3P0 model.

Unfortunately, we cannot compute the φ(1020)→ KK
decay due to kinematical reasons: although the calculated
masses for the φ- and the K-mesons are accurate up to
only ≈ 3%, the relation Mφ ≥ 2MK is missed by a few
MeV and thus a calculation of this decay is prohibited.
We could of course slightly re-adjust our model parame-
ters (e.g. to lower the K mass a little bit); however, we
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Table 4. Results on strong two-body decays of (excited)
isoscalar ωJ - and φJ -mesons. All widths are given in units of
[MeV]; the experimental data are extracted from ref. [14]. Note
that the ω(1420) is considered to be a dominantly S-wave state
in ref. [7]; therefore, we identify it with the second nn̄ excita-
tion in the ω/φ system (see [11,35]). For the same reason, we
assume that the φ(1680) is the second ss̄ excitation in the ω/φ
system. For further comments, see text and caption of table 2.

Final Experimental 3P0 model This Incl. Incl.
state partial width (refs. [7,8]) work III ZRV

ω(782) , Γ total
exp = 8.44± 0.09 MeV

ππ 0.19±0.03 – 0.00 ◦ ◦

ω(1420) , Γ total
exp = 174± 59 MeV

ρπ dominant 328 4.73 ◦ ◦

ηω – 12 2.82 ◦ ◦

b1(1235)π – 1 0.17 ◦ ◦

KK – 31 1.99 ◦ ◦

ω3(1670) , Γ total
exp = 168± 10 MeV

ρπ seen 50 8.76 ◦ ◦

ηω – 2 4.10 ◦ ◦

b1(1235)π possibly seen 7 3.33 ◦ ◦

KK – 8 6.37 ◦ ◦

φ(1020) , Γ total
exp = 4.46± 0.03 MeV

KK 2.19± 0.04 4.08 – ◦ ◦

ππ (0.33± 0.06) · 10−3 – 0.00 ◦ ◦

ωπ (0.21± 0.09) · 10−3 – 0.00 ◦ ◦

φ(1680) , Γ total
exp = 150± 50 MeV

KK dominant – 7.83 ◦ ◦

KK∗ seen – 4.11 ◦ ◦

φ3(1850) , Γ total
exp = 87+28

−23
MeV

KK seen – 26.7 ◦ ◦

KK∗ seen – 13.8 ◦ ◦

have refrained from such a manipulation as the decay rate
is obviously extremely sensible to the precise values of the
phase space factor in φ(1020) → KK, see also eq. (31).
The other partial widths of the φ(1020) are found to be
strictly zero in our model since a ss̄ state clearly cannot
decay into two nn̄ states via a simple quark loop mech-
anism alone; the non-vanishing experimental widths for
φ(1020) → ππ/ωπ indicate that additional diagrams be-
yond lowest order in fact play a role for some decays even
if mesons with non-zero total angular momentum are in-
volved in the process. For the decays of the φ(1680) and
φ3(1850) into kaon pairs, we find at least plausible re-
sults by considering the quark loop contribution; again,
the sums of the KK and KK∗ decay widths are not suf-
ficient to explain the total decay widths of these mesons.

Table 5. Results on strong two-body decays of (excited)
isoscalar hJ - and isovector bJ -mesons. All widths are given
in units of [MeV]; the experimental data are extracted from
ref. [14]. The nn̄ states h1(1700), h3(2050), b1(1700) and
b3(2050) are not listed in ref. [14] by the Particle Data Group;
however, the assumptions of the 3P0 model concerning their
masses fit very well to the results of our quark model (see [11,
35]). For further comments, see text and caption of table 2.

Final Experimental 3P0 model This Included Included

state partial width (refs. [6,7]) work III ZRV

h1(1170) , Γ total
exp = 360± 40 MeV

ρπ seen 383 50.6 ◦ ◦

h1(1700) , Γ total
exp unknown

ρπ – 173 5.16 ◦ ◦

ωη – 17 0.99 ◦ ◦

ρ(1465)π – 31 15.3 ◦ ◦

b1(1235)π – 0 0.00 ◦ ◦

KK∗ – 30 0.52 ◦ ◦

h3(2050) , Γ total
exp unknown

ρπ – 115 6.38 ◦ ◦

ωη – 13 5.91 ◦ ◦

ρ(1465)π – 1 13.1 ◦ ◦

b1(1235)π – 0 0.00 ◦ ◦

KK∗ – 22 2.73 ◦ ◦

b1(1235) , Γ total
exp = 142± 9 MeV

ωπ seen 143 16.9 ◦ ◦

b1(1700) , Γ total
exp unknown

ωπ – – 1.72 ◦ ◦

ρη – 18 0.99 ◦ ◦

ρρ – 60 0.70 ◦ ◦

a2(1320)π – 67 6.51 ◦ ◦

KK∗ – 30 0.52 ◦ ◦

b3(2050) , Γ total
exp unknown

ωπ – 37 2.13 ◦ ◦

ρη – 13 5.91 ◦ ◦

ρρ – 33 0.02 ◦ ◦

a2(1320)π – 107 3.59 ◦ ◦

KK∗ – 22 2.73 ◦ ◦

4.5 Decays of hJ- and bJ-mesons

The decay widths of the isoscalar hJ - and isovector bJ -
mesons are summarized in table 5. Note that the nn̄ states
h1(1700)/b1(1700) and h3(2050)/b3(2050) are not listed
by the Particle Data Group (see [14]); however, their (de-
generated) masses assumed in the framework of the 3P0
model in ref. [7] fit excellently to the numerical results of
our relativistic quark model (see [11,35]). Thus, we have
decided to list their decay widths although no experimen-
tal data concerning their partial widths exist so far.
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The ρπ decay modes of the hJ -mesons are not as dom-
inant in our calculation as they appear in the 3P0 model.
In fact, our calculation yields a larger partial width if the
first radial ρ excitation is in the final state. Concerning
the vanishing probability of the decays into a b1(1235)π
final state, we observe a similarity between our approach
and the 3P0 model. The comparison concerning the other
bJ decay modes show that the ρρ final state is strongly
suppressed in our calculation while —in the framework of
the 3P0 model— it plays a significant role in the b1(1700)
and b3(2050) decays. We refrain from a further discussion
of this sector as there are no reliable experimental data to
compare with so far.

4.6 Decays of aJ-mesons

We review our results concerning the aJ strong decays in
table 6. The masses of these isovector mesons are quite
well decribed as the a0 masses are only slightly overesti-
mated while the aJ masses for J 6= 0 are correctly calcu-
lated up to only a few percent in our approach (see [11]);
note that this statement also holds for the radial excita-
tions in this sector.

Let us first focus on the strong two-body decays of
the a0(980)- and a0(1450)-mesons. The relative strength
of the ηπ and KK decay modes are well reproduced for
the a0 ground state. For the radial excitation, the pat-
tern is again quite plausible: the decay widths add up
to ≈ 100 MeV compared to only ≈ 10 MeV in the 3P0
model which strongly underestimates the experimentally
determined total decay width. In fig. 4, we show how the
instanton-induced six-quark interaction significantly lifts
the ηπ partial width of the a0(980) and a0(1450) mesons;

without this contribution (i.e. for g
(3)
eff = 0), the quark loop

diagram alone would in fact give results of only a few MeV
as predicted by the 3P0 model. We consider the interplay
between the quark loop and the instanton-induced con-
tribution to these decay widths as an impressing feature
of our ansatz that includes diagrams beyond lowest order.
The interference of OZI-allowed and OZI-forbidden con-
tributions can clearly be studied in fig. 4; obviously, the
Zweig-rule–violating processes are important for the un-
derstanding of these decays. In this example, the relative
sign between both parts leads to a destructive interference
finally yielding partial widths in the correct order of mag-
nitude. This underlines our introductory statement that
the instanton-induced mechanism plays a crucial role in
the description of scalar-meson decays.

The lack of diagrams induced by ’t Hooft instanton
force is visible in our results for the a1-mesons. They are
smaller by an order of magnitude compared to the non-
relativistic 3P0 model; we thus find again that the pure
quark loop calculations underestimate the partial widths
in the presence of one or two pions in the final state.
However, the decays of the a2(1320) are plausibly de-
scribed in our relativistic approach compared to the 3P0
model as well as to experiment. The accuracy of our re-
sults is not satisfying; nevertheless, the numbers in table 6
clearly show that an approximative agreement with the

Table 6. Results on strong two-body decays of (excited)
isovector aJ -mesons. All widths are given in units of [MeV];
the experimental data are extracted from ref. [14]. In the 3P0

model, the second radial excitation of the a0-meson is assumed
to have a mass around Ma′0

≈ 1700 MeV (see [7]). Note that

the different versions of the 3P0 model give partly different
results for the decay widths, e.g. Γ (a2 → ρπ) = 54 MeV in
ref. [7] but Γ (a2 → ρπ) = 34 MeV in ref. [8]; in the table,
we use the results of ref. [8] concerning the partial widths of
the a2(1320)-meson for comparison. For further comments, see
text and caption of table 2.

Final Experimental 3P0 model This Included Included

state partial width (refs. [6–8]) work III ZRV

a0(980) , Γ total
exp = 50 . . . 100 MeV

ηπ dominant – 70.2 • •

KK seen – 42.9 • ◦

a0(1450) , Γ total
exp = 265± 13 MeV

ηπ seen 5 31.4 • •

η′π seen 5 12.7 • •

KK seen 0 64.7 • ◦

a1(1260) , Γ total
exp = 250 . . . 600 MeV

ρπ seen 545 11.9 ◦ ◦

σπ seen – 7.18 ◦ ◦

a1(1640) , Γ total
exp = 300± 50 MeV

f2(1270)π seen 39 0.32 ◦ ◦

σπ seen – 0.58 ◦ ◦

a2(1320) , Γ total
exp = 104.7± 1.9 MeV

ρπ 77.3± 5.4 34.3 15.0 ◦ ◦

ηπ 16.0± 1.3 8.01 8.67 ◦ ◦

η′π 0.59± 0.10 0.56 1.07 ◦ ◦

KK 5.40±0.88 5.24 11.7 ◦ ◦

a4(2040) , Γ total
exp = 361± 50 MeV

ρπ seen 33 2.17 ◦ ◦

ρ3π – 2 0.85 ◦ ◦

f2(1270)π seen 10 0.69 ◦ ◦

experimental data for the a2(1320) partial widths can be
achieved without any re-adjustment of our fundamental
model parameters.

4.7 Decays of fJ-mesons

The strong decays of the isoscalar fJ -mesons are particu-
larly interesting as they might allow for an identification
of the possible non-qq̄ nature of certain mesons in this sec-
tor. In tables 7 and 8, we summarize our results concern-
ing the fJ -mesons and compare them with experimental
data and (rare) results of the 3P0 model. Note that the
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Fig. 4. The widths of the decays (a) a∗0(980) → ηπ and (b) a∗0(1450) → ηπ and their dependence on the coupling constant

g
(3)

eff of ’t Hooft’s three-body force due to instanton effects; see text for more details. The thick solid line ( ) indicates the
total decays widths based on the interference of OZI-allowed diagrams (– – –) and OZI-violating diagrams due to the instanton
interaction (· · · ); obviously, the interference in this example is destructive. Again, the vertical dashed lines mark our choice for

the ’t Hooft coupling g
(3)

eff .

masses of these mesons are correctly determined within
our approach up to only a few percent (see [11,35]).

Let us first consider the decays f0 → ππ for the ground
state (Mf0 ≈ 400 . . . 1200 MeV≈ 665 MeV), the first
(Mf0 ≈ 1370 MeV) and the second (Mf0 ≈ 1500 MeV) ra-
dial excitation6. We have plotted the partial decay widths
with respect to their dependence on the six-quark cou-

pling g
(3)
eff of ’t Hooft’s force in fig. 5. As all mesons in

these decays have total angular momentum J = 0, the
instanton-induced interaction provides an additional con-
tribution to the decay widths beyond the lowest-order
quark loop diagrams. Moreover, we observe Zweig-rule–
violating amplitudes in these decays as the f0-mesons are
isoscalar (see sect. 3.5 for comparison). The widths based
on OZI-allowed processes and OZI-forbidden processes are
indicated in fig. 5; the thick solid line in these plots de-
notes the total partial width for f0 → ππ produced by the
interference of the underlying mechanisms.

At this point, we want to comment on the frequently
discussed considerations of the scalar nonet in standard
(mainly nonrelativistic) quark models: Due to the sup-
pression of the decay mode f0(1500)→ KK̄, the f0(1500)
should be assigned to a dominantly n̄n-state rather than
to a dominantly s̄s-state. Then this resonance may be
viewed as the isoscalar partner of the a0(1450) and
K∗0 (1430). Whereas the observed widths for the latter res-
onances (∼ 300 MeV) can be well reproduced in the stan-
dard quark models, the same models yield Γ (f0(1500)) >
500 MeV in clear contradiction to experiment. From this
point of view the experimental width of the f0(1500) in-

6 For the discussion of the glueball nature of the f0(1500) we
refer to refs. [36–38].

deed seems to be “unnaturally small”. However, these
arguments are completely wrong if Zweig-rule–violating
forces are taken into account; merely, the conventional
conclusion concerning the flavour contents of resonances,
which may be roughly formulated as “dominant ππ de-
cay mode indicates large nonstrange contents in the de-
caying resonance” and “dominant KK̄ decay mode indi-
cates large strange contents in the decaying resonance”,
is certainly not true for mesons that can decay via the
instanton-induced six-quark interaction via a Zweig-rule–
violating process.

In fig. 5a, the decay f0(400 . . . 1200) → ππ is plotted;
obviously, the interference between OZI-allowed processes
and OZI-forbidden processes is destructive. The Zweig-

rule–violating width is huge at g
(3)
eff = 71.4 GeV−5; due to

the destructive interference of the different amplitudes,
the resulting partial width is however reduced to only
297 MeV which is quite realistic for this decay mode. Note
that the pure quark loop contribution in this example is
only ≈ 40 MeV which would clearly underestimate the ππ
width of the σ-meson; again, we thus see the interesting
influence of the additional instanton-induced contribution
to the partial width. The analogue plots for the decays
f0(1370)→ ππ and f0(1500)→ ππ are given in figs. 5(b)
and 5(c). For the f0(1370) decay, we observe a construc-
tive interference of the OZI-allowed and OZI-forbidden
amplitudes lifting the partial width to 477 MeV which
is comparable to the 3P0 model with 271 MeV (see [6]).
However, the experimental width given in ref. [15] is sig-
nificantly smaller, namely Γexp = 21.7 ± 9.9 MeV. In
the Crystal Barrel experiment presented in this publica-
tion, the f0(1370) dominantly decays into its σσ mode.
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Table 7. Results on strong two-body decays of (excited)
isoscalar fJ -mesons with J = 0, 1. All widths are given in
units of [MeV]. The experimental data for the f0(1370) and
f0(1500) decays are extracted from ref. [15]; the rest is given
in ref. [14]. Note that the f0(400 . . . 1200) meson is usually la-
beled “σ” in this work. For further comments, see text and
caption of table 2.

Final Experimental 3P0 model This Included Included

state partial width (ref. [6]) work III ZRV

f0(400 . . . 1200) , Γ total
exp = 600 . . . 1000 MeV

ππ dominant – 297 • •

f0(1370) , Γ total
exp = 275± 55 MeV

ππ 21.7± 9.9 271 477 • •

ηη 0.41± 0.27 – 6.25 • •

σσ 120.5± 45.2 – – • •

ρρ 62.2± 28.8 – – ◦ ◦

KK 5.2 . . . 28.4 – 34.7 • •

a1(1260)π 14.1± 7.2 – – ◦ ◦

f0(1500) , Γ total
exp = 130± 30 MeV

ππ 44.1± 15.3 – 15.7 • •

π(1300)π 35.5± 29.2 – 1.40 • •

ηη 3.4± 1.2 – 20.2 • •

ηη′ 2.9± 1.0 – 0.08 • •

σσ 18.6± 12.5 – 37.9 • •

ρρ 8.9± 8.2 – – ◦ ◦

KK 8.1± 2.8 – 27.7 • •

a1(1260)π 8.6± 6.6 – 2.11 ◦ ◦

f0(1710) , Γ total
exp = 125± 10 MeV

ππ seen – 63.9 • •

ηη seen – 3.51 • •

ηη′ – – 0.23 • •

ρρ – – 2.50 ◦ ◦

KK seen – 0.06 • •

f1(1285) , Γ total
exp = 24.0± 1.2 MeV

a0(980)π 8.64±1.73 – 0.06 ◦ ◦

f1(1420) , Γ total
exp = 55.0± 2.9 MeV

a0(980)π – – 0.00 ◦ ◦

KK∗ dominant – 3.41 ◦ ◦

Unfortunately, we cannot compute this decay for a more
detailed comparison due to kinematical reasons7; it is
therefore difficult to explain this discrepancy of the ππ
partial width between theory and experiment from our
point of view. In ref. [15], we also find an experimental

7 As in the decay φ(1020) → KK, the exact masses of the
outgoing particles in f0(1370)→ σσ are slightly larger by some
MeV than the mass of the decaying particle; in sect. 4.4, we
explain why we refrain from a parameter re-adjustment in such
a situation.

Table 8. Results on strong two-body decays of (excited)
isoscalar fJ -mesons with J = 2, 4, 6. All widths are given
in units of [MeV]; the experimental data are extracted from
ref. [14]. According to the Particle Data Group, the total an-
gular momentum of the fJ(2220) could either be J = 2 or
J = 4 (see [14]); here, we consider this meson as the first ss̄
excitation of the f4 system with I(Jπc) = 0(4++). For further
comments, see text and caption of table 2.

Final Experimental 3P0 model This Included Included

state partial width (ref. [8]) work III ZRV

f2(1270) , Γ total
exp = 185.1+3.4

−2.6
MeV

ππ 156.9+3.8
−1.3

144 6.33 ◦ ◦

KK 8.6± 0.8 8.53 11.7 ◦ ◦

ηη 0.83± 0.18 1.02 3.48 ◦ ◦

f ′2(1525) , Γ total
exp = 76± 10 MeV

ππ 0.60± 0.12 – 0.00 ◦ ◦

KK 65+5
−4

82.8 60.5 ◦ ◦

ηη 7.6± 2.5 7.84 7.86 ◦ ◦

f4(2050) , Γ total
exp = 222± 19 MeV

ππ seen – 0.29 ◦ ◦

KK seen – 1.86 ◦ ◦

f4(2220) , Γ total
exp = 23+8

−7
MeV

ππ seen 53.1 0.00 ◦ ◦

KK seen 0.25 8.74 ◦ ◦

ηη – 4.62 1.17 ◦ ◦

ηη′ seen – 0.55 ◦ ◦

ωω – 23.6 0.00 ◦ ◦

a2(1320)π – – 0.00 ◦ ◦

f6(2510) , Γ total
exp = 255± 40 MeV

ππ 15.3±3.5 – 0.02 ◦ ◦

KK – – 0.11 ◦ ◦

value for the partial width of the decay f0(1500) → ππ
which reads Γexp = 44.1 ± 15.3 MeV. Again, the ex-
perimental value is one order of magnitude smaller than
the several hundred MeV that we found for the ππ decay
modes of the first two states in the f0 spectrum. Surpris-
ingly, our result for this decay width is 15.7 MeV which
is in rough agreement with the experiment due to the de-
structive interference of the various amplitudes that con-
tribute to this process. Without ’t Hooft’s six-quark in-
teraction, the pure quark loop result for the partial width
would be ≈ 1 MeV which would have clearly underesti-
mated the experimental data. This observation again un-
derlines the importance of the unique feature of our ap-
proach, namely the generic inclusion of instanton-induced
vertices beyond lowest order for the determination of the
strong two-body decay widths. For further results of the
3P0 model for the f0- and the f1-mesons, we refer to the
recent preprint of Barnes et al. (see [33]).
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(b) f0(1370)→ ππ
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Fig. 5. The widths of the decays f0 → ππ and their dependence on the coupling constant g
(3)

eff of ’t Hooft’s three-body force
for (a) the ground state with Mf0 ≈ 400 . . . 1200 MeV≈ 665 MeV, (b) the first radial excitation with Mf0 ≈ 1370 MeV, and
(c) the second radial excitation with Mf0 ≈ 1500 MeV; see text for more details. Again, the thick solid line ( ) indicates the
total decays widths based on the interference of OZI-allowed diagrams (– – –) and OZI-violating diagrams due to the instanton

interaction (· · · ). Here as in the other pictures, the vertical dashed lines mark our choice for the ’t Hooft coupling g
(3)

eff .

Let us now turn to a discussion of the other f0 decay
modes which we have not mentioned so far. In table 7, we
present numerous other results of our calculations with re-
spect to ηη, σσ, KK and other final states. In most cases,
we find the correct order of magnitude for the widths al-
though the results are sometimes significantly off the error
bars. In fig. 6, we plot the partial widths for the decays
f0(1500) → ππ/ηη/σσ/KK with respect to the strength
of the instanton-induced six-quark interaction. The results

at g
(3)
eff = 71.4 GeV−5 in general tend to be too large com-

pared with the experimental widths presented in ref. [15].
This fact might hint at a possible re-adjustment of the

six-quark coupling constant g
(3)
eff at these data; as we have

noted before, we have hitherto fixed this constant at the
partial width of the decay K∗0 → Kπ where it might have
been adjusted to a slightly too large numerical value. We
shall note at this point that the experimental data in this
sector are from one experiment only (see [15]) and that
there are no other theoretical calculations such that a de-
tailed comparison might be premature. However, our re-
sults seem to be not completely unplausible such that we
still consider our approach as a reliable basis for future
studies in this field.

In some references not the widths but the coupling
constants of the f0 decays are studied (see [39,40]). These
are proportional to the decay matrix element without
any kinematical factor. For the f0(1370), f0(1500) and
f0(1710), we find the following relative strengths for the

relevant decay modes:

f0(1370) → ππ : KK : ηη

= 1 : 0.34 : 0.16 ,

f0(1500) → ππ : KK : ηη : ηη′

= 1 : 1.53 : 1.33 : 0.13 ,

f0(1710) → ππ : KK : ηη : ηη′

= 1 : 0.03 : 0.26 : 0.08 .

In [12] we have discussed the question that the hadronic
states in our model might be “bare” states in the sense
of a K-matrix analysis [39,40] rather than physical “reso-
nant” states. Especially in the scalar sector we have found
surprisingly good agreement with the K-matrix analysis
results up to high resonances. Concerning the coupling
constants we note that processes with pionic final states
involved seem to be problematic for such a comparison;
thus, we focus on the relative coupling strenghts of the
KK, ηη and ηη′ channels as displayed above. Compared
to fig. 6 in ref. [39] we find that our results for the strong
decays presented here again support such an interpreta-
tion of Bethe-Salpeter meson states as “bare” qq̄ states in
the sense of Anisovich et al. .

Another point to mention here is the flavour structure
of the fJ -mesons with J 6= 0. In general, the ground state
is purely nn̄ while the next radial excitation is a ss̄ state;
note that —in contrast to the f0-mesons— there is no
flavour mixing for these mesons as ’t Hooft’s force only
acts on mesons with J = 0. This is the reason why the ππ
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Fig. 6. The widths of the decays f0(1500) → ππ, f0(1500) → ηη, f0(1500) → σσ and f0(1500) → KK, and their dependence

on the coupling constant g
(3)

eff of ’t Hooft’s three-body force; see text for more details. The vertical dashed line marks our choice

for the ’t Hooft coupling g
(3)

eff .

widths of the first excitations of the f1-, f2- and f4-mesons
are zero since the quark loop mechanism alone cannot pro-
vide a ss̄ → nn̄ + nn̄ transition8. The ππ widths of the
related ground states are in general too low by orders of
magnitudes; as we have already concluded before, the in-
stantaneous Bethe-Salpeter ansatz might not be adequate
for the deeply bound pion such that the resulting meson-
quark-antiquark vertex functions are not appropriate for
further calculations even in a relativistic framework. The
other decay modes of the fJ -mesons (J 6= 0) are in accept-
able agreement with the experimental data; in particular
the f2(1270) and f ′2(1525) decays into KK and ηη final
states are excellently described.

4.8 Decays of KJ-mesons

In table 9, we summarize our calculations of partial widths
for strongly decaying KJ -mesons. Let us note that the KJ

states for J 6= 0 are twice degenerated for each mass due
to spins S = 0 and S = 1 which are not separated by the
interquark forces in our model; nevertheless, the number
of states in the spectrum is correct (see [11]).

The K(1460) is the first radial excitation of the pseu-
doscalar kaon in our model. In our calculation, the Kρ
mode is quite strong compared to the other final states;
this seems to be not unrealistic compared to experi-
ment. Note hereby that the nearly vanishing width for
K(1460) → K∗0 (1430)π is found due to the destructive

8 For the same reason, we find vanishing decay widths for
the decays f4(2220)→ ωω and f4(2220)→ a2π; see table 8 for
comparison.

interference between the approximately equal amplitudes
from the quark loop diagram and the instanton-induced
six-quark vertex contributing to this particular process.

The decays K1(1270)→ Kρ/K∗π/Kω are excellently
described in our model; here, the 3P0 model clearly over-
estimates all widths in this sector. This impressing agree-
ment is exceptional insofar as other kaonic decay modes
often suffer from the unrealistic smallness of the calcu-
lated partial widths. Indeed, for the next K1 excitation,
our results are less well in agreement with the experiment.
Moreover, the K2(1580) and K2(1770) decays seem to be
clearly underestimated in our approach; the experimen-
tal data are however poor and no comparison with the
non-relativistic model is possible so far.

4.9 Decays of K∗

J -mesons

As we have already discussing in sect. 4.1, the value of
the strength parameter for ’t Hooft’s six-quark interac-
tion is fixed at the experimental decay width Γexp =
274 ± 37 MeV of the decay K∗0 (1430) → Kπ. In fig. 3,
we present the related plots not only for the ground state
but also for the first radial excitation K∗0 (1950), which is

also very well described by our choice g
(3)
eff = 71.4 GeV−5.

Thus, the decay widths forK∗0 → Kπ presented in table 10
are clearly in good agreement with the experimental data

since we have adjusted our last free parameter g
(3)
eff in this

sector. The other decays in this final table involve mesons
with J 6= 0; they proceed exclusively via quark loop dia-
grams and are thus not affected by our parameter choice.
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Table 9. Results on strong two-body decays of (excited) iso-
dublet KJ -mesons. All widths are given in units of [MeV]; the
experimental data are extracted from ref. [14]. For further com-
ments, see text and caption of table 2.

Final Experimental 3P0 model This Included Included

state partial width (ref. [8]) work III ZRV

K(1460) , Γ total
exp ≈ 250 . . . 260 MeV

Kρ seen – 56.7 ◦ ◦

K∗(892)π seen – 0.11 ◦ ◦

K∗
0 (1430)π seen – 0.01 • ◦

K1(1270) , Γ total
exp = 90± 20 MeV

Kρ 37.8±10.0 118 29.0 ◦ ◦

K∗(892)π 14.4± 5.5 29.6 14.1 ◦ ◦

Kω 9.9± 2.8 23.0 7.69 ◦ ◦

K1(1400) , Γ total
exp = 174± 13 MeV

Kρ 2±1 77.8 22.0 ◦ ◦

K∗(892)π 117± 10 319 13.9 ◦ ◦

Kω 23± 12 31.6 7.40 ◦ ◦

K2(1580) , Γ total
exp ≈ 110 MeV

K∗(892)π seen – 0.69 ◦ ◦

K∗
2 (1430)π possibly seen – 0.74 ◦ ◦

Kφ – – 0.78 ◦ ◦

Kω – – 5.48 ◦ ◦

K2(1770) , Γ total
exp = 186± 14 MeV

K∗(892)π seen – 6.84 ◦ ◦

K∗
2 (1430)π dominant – 2.28 ◦ ◦

Kφ seen – 4.37 ◦ ◦

Kω seen – 4.91 ◦ ◦

It is very interesting to consider the decays K∗J → Kπ
with J = 1, 2, 3, 4, 5 (tables 10, 11); let us first restrict to
ground-state K∗J -mesons. For J = 1, we find an excellent
agreement with the experimental width Γexp ≈ 50 MeV.
The experimental partial widths for Kπ final states de-
crease characteristically for increasing total angular mo-
menta J . A comparison with the formula given in eq. (31)
shows that this decrease can be approximately traced back
to the influence of the phase space factor 1

2J1+1 · k
M2

1
such

that the matrix element itself should be more or less the
same for all K∗J → Kπ decays (J = 1, . . . , 5). Unfortu-
nately, this is not correctly described by our model such
that our calculation increasingly fails to describe correctly
the experimental partial widths for higher angular mo-
menta J . We have already noted that pionic final states
might be hard to describe in an instantaneous framework;
here, we find another example for this conjecture.

For the other decay modes in this sector, we observe
generally a quite poor agreement with experiment as well
as with the results of the 3P0 model. For particular decay
channels, our calculation yields more realistic numbers for

Table 10. Results on strong two-body decays of (excited) iso-
dubletK∗

J -mesons with J = 0, 1, 2. All widths are given in units
of [MeV]; the experimental data are extracted from ref. [14].
For further comments, see text and caption of table 2.

Final Experimental 3P0 model This Included Included

state partial width (ref. [8]) work III ZRV

K∗
0 (1430) , Γ total

exp = 294± 23 MeV

Kπ 274±37 455.8 274 • ◦

K∗
0 (1950) , Γ total

exp = 201± 86 MeV

Kπ 105±52 – 80.5 • ◦

K∗(892) , Γ total
exp = 50.8± 0.9 MeV

Kπ ≈50 33.9 48.3 ◦ ◦

K∗(1410) , Γ total
exp = 232± 21 MeV

K∗(892)π > 93 – 0.00 ◦ ◦

Kπ 15.3±3.3 23.3 3.51 ◦ ◦

Kρ < 16.2 – 0.18 ◦ ◦

K∗(1680) , Γ total
exp = 322± 110 MeV

K∗(892)π 96.3+33
−36

44.5 1.27 ◦ ◦

Kπ 124.6±42 107.7 2.71 ◦ ◦

Kρ 101.1+38
−35

39.3 2.21 ◦ ◦

K∗
2 (1430) , Γ total

exp = 105± 10 MeV

K∗(892)π 24.3± 1.6 29.1 6.75 ◦ ◦

Kπ 49.1± 1.8 77.6 14.1 ◦ ◦

Kρ 8.5± 0.8 17.6 3.89 ◦ ◦

Kω 2.9± 0.8 2.7 1.30 ◦ ◦

Kη 0.15+0.33
−0.10

3.4 0.06 ◦ ◦

K∗
2 (1980) , Γ total

exp = 373± 70 MeV

K∗(892)π seen – 0.00 ◦ ◦

Kπ – – 1.15 ◦ ◦

Kρ seen – 0.53 ◦ ◦

the partial widths than the non-relativistic model (e.g. for
K∗2 (1430) → Kη) but, in general, we observe a decreas-
ing accuracy of our results for higher K∗J excitations and
larger total angular momenta. Note, however, that the cal-
culated large widths for the decays K∗3 (1780)→ K∗(892)ρ
and K∗3 (1780) → K∗(892)ω lead at least to a qualitative
understanding of the total decay width in the framework
of our model.

4.10 Decays of ηJ-mesons

In table 12, we present our results concerning the strong
decays of the η′(958)-, η(1440)- and η2(1645)-mesons.
Their masses are well described in our relativistic quark
model; the well-known flavour mixing of the pseudoscalar
η-mesons is induced by ’t Hooft instanton interaction
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Table 11. Results on strong two-body decays of (excited) iso-
dubletK∗

J -mesons with J = 3, 4, 5. All widths are given in units
of [MeV]; the experimental data are extracted from ref. [14].
For further comments, see text and caption of table 2.

Final Experimental 3P0 model This Included Included

state partial width (ref. [8]) work III ZRV

K∗
3 (1780) , Γ total

exp = 159± 21 MeV

Kρ 49.3±15.7 30.0 9.17 ◦ ◦

K∗(892)π 31.8±9.0 37.1 2.84 ◦ ◦

Kπ 29.9±4.3 46.9 3.83 ◦ ◦

Kη 47.7±21.6 8.4 12.8 ◦ ◦

K∗
2 (1430)π < 25.4 – 0.14 ◦ ◦

K∗(892)ρ – – 44.3 ◦ ◦

K∗(892)ω – – 14.8 ◦ ◦

K∗
4 (2045) , Γ total

exp = 198± 30 MeV

Kπ 19.6±3.8 21.7 1.10 ◦ ◦

K∗(892)φ 2.8±1.4 – 1.13 ◦ ◦

K∗
5 (2380) , Γ total

exp = 178± 49 MeV

Kπ 10.9±3.7 – 0.33 ◦ ◦

Table 12. Results on strong two-body decays of (excited)
isoscalar ηJ -mesons. All widths are given in units of [MeV].
The experimental data for the η(1440) partial widths are ex-
tracted from ref. [16]; the rest is given in ref. [14]. For further
comments, see text and caption of table 2.

Final Experimental 3P0 model This Included Included

state partial width (ref. [7]) work III ZRV

η′(958) , Γ total
exp = 0.20± 0.02 MeV

ρπ < 0.008 – 0.00 ◦ ◦

η(1440) , Γ total
exp = 50 . . . 80 MeV

KK∗ 21.6± 5.2 – 21.8 ◦ ◦

a0(980)π 26.6± 7.0 – 18.8 • •

ση 27.0± 6.0 – 43.9 • •

η2(1645) , Γ total
exp = 180+22

−20
MeV

a0(980)π seen – 20.8 ◦ ◦

a2(1320)π seen 189 18.5 ◦ ◦

KK∗ seen 26 5.18 ◦ ◦

ρρ – 33 0.16 ◦ ◦

and has been extensively discussed in refs. [11,35]. We
should note that our quark model does not support the
hypothesis of the existence of the η(1295)-meson as a
pure qq̄ state; it is interesting that in fact no evidence
for this state has been found by the Crystal Barrel group
(see [16,19,41,42]).

The vanishing decay width of the process η′ → ρπ is
in agreement with experiment. Some preliminary partial
decay widths of the η(1440)-meson are quoted in ref. [16];

they are given in table 12. Our results are in acceptable
(and partly excellent) agreement with these experimen-
tal data; note that this statement refers to decays that
are described by quark loop diagrams only (such as the
KK∗ final state) as well as to decays in which additional
instanton-induced vertices have been considered (such as
the a0π and ση final states). Concerning the latter decays,
the Crystal Barrel group recently found the experimental
decay width ratio R := Γ a0π

exp/Γ
ση
exp = 0.62±0.14 (see [19]).

In our approach, we find R = 0.43 which is in reasonable
agreement with this analysis; note that R = 0.4 ± 0.2
has earlier been found in ref. [15] (for more references,
see [19]). It is interesting to look at fig. 7 for a more de-
tailed discussion; in this plot, we present the dependence
of the decay widths η(1440)→ a0π and η(1440)→ ση on
the strength of ’t Hooft’s instanton force. Since the a0π
partial width remains more or less constant while the ση
width is monotonically increasing, a sufficiently large cou-

pling constant g
(3)
eff is needed in order to compute a ratio

R < 1; however, we find again that a slightly smaller value

than g
(3)
eff = 71.4 GeV−5 would provide a more exact ratio

compared to the experiment quoted in ref. [19]. Finally,
the η2(1645) decay widths are smaller than the values ob-
tained in the framework of the 3P0 model; a more detailed
comparison is prevented by the poor accuracy of the ex-
perimental data.

5 Summary

In this paper, we have studied strong two-body decays of
light mesons. Our approach is based on a relativistic quark
model which describes the complete meson spectrum by
means of the Bethe-Salpeter equation in its instantaneous
approximation. The quark-antiquark interaction is param-
eterized by a confinement potential with an appropriate
spinorial structure in Dirac space. Furthermore, we adopt
’t Hooft’s instanton-induced interaction that provides a
conving picture for the well-known mass splittings and
flavour mixing effects in the pseudoscalar and scalar me-
son sector. As we have shown in refs. [11,12], this formally
covariant ansatz leads to an excellent description of the
mass spectrum of the light mesons. Furthermore, we have
investigated several electroweak-decay processes involving
light mesons with good results compared to the exper-
imental data; a complete overview on this approach for
the intense study of light mesons can be found in ref. [35].

For the calculation of the strong-decay widths, we have
applied the Mandelstam formalism for the derivation of
the related matrix element. Hereby, we have included not
only the lowest-order quark loop diagrams that contribute
to all possible decay modes; moreover, we implemented
the three-body interaction of ’t Hooft’s instanton-induced
force that acts on mesons with vanishing total angular
momentum. We have thus found that an interference be-
tween quark loop diagrams and amplitudes originating
in the instanton interaction occurs if all mesons in the
decay M1 → M2M3 have angular momentum Ji = 0
(i = 1, 2, 3). We shall add that ’t Hooft’s six-quark vertices



686 The European Physical Journal A

η(1440)→ ση
η(1440)→ a0π

g3 [GeV−5]

Γ
[M

eV
]

100806040200

80

70

60

50

40

30

20

10

0

Fig. 7. The widths of the decays η(1440) → a∗0(980)π and η(1440) → ση and their dependence on the coupling constant g
(3)

eff
of ’t Hooft’s three-body force due to instanton effects; see text for more details. Note that the vertical dashed line denotes our

choice for the ’t Hooft coupling g
(3)

eff .

also provide Zweig-rule–violating amplitudes contributing
to the partial width, if and only if at least one of the
mesons in the decay process is of isoscalar type. Sum-
marizing, we have calculated the quark loop for each de-
cay and, additionally, the instanton-induced contribution
if only mesons with Ji = 0 participate in the process un-
der consideration; eventually, OZI-forbidden amplitudes
might occur due to the latter mechanism if η, η′, . . . or
f0, f

′
0, . . . mesons are involved in the particular decay.

We have compared our numerical results for the nu-
merous partial decay widths with the experimental data,
if possible (see [14] and [15–19]); in some sectors, these
data are quite poor such that more reliable experimental
results for the decay width would be extremely helpful to
clarify some of the puzzling issues in this field. Moreover,
we refered to the so-called 3P0 model first proposed by
A. Le Yaouanc et al. (see [1–3]) which is a non-relativistic
approach using quark lines and assuming the creation of
an additional quark-antiquark pair with vacuum quantum
numbers Jπc = 0++; the numerical results obtained in this
framework were quoted from refs. [6–8].

Before we summarize our numerical results for the par-
tial widths, we shall note that our approach —similar to
the 3P0 model— does not take into account any final-state
interaction. The neglect of the related effects is clearly a
shortcoming of our ansatz which is, however, hard to over-
come in a quark model like the one presented in this publi-
cation. We have thus restricted our model to the “impulse
approximated” approach although final-state interactions
are expected to significantly modify the partial widths.

Let us first focus on decays in which only the pure
quark loop diagrams contribute to the partial widths. We

found that we achieve a description of the strong meson
decays that is in parts comparable to the 3P0 model. How-
ever, we also noted that we sometimes underestimate the
partial widths by one order of magnitude (or even more)
compared to the experiment. This flaw is mostly observed
for decays in which one or two pions are in the final state;
it might be related to the fact that the underlying in-
stantaneous approximation of the Bethe-Salpeter equation
is not suitable for deeply bound states such as the pion
ground state. Furthermore, decays of mesons with large
angular momentum and decays of highly excited mesons
are in general not so well described by the quark loop
mechanism alone. It remains an open question whether
additional effects due to the final-state interaction could
modify this observation.

For decays in which instanton-induced vertices beyond
the lowest-order quark loop diagrams are included, we
find that the additional six-quark interaction has a strong
impact on the numerical results. These decays involve
only scalar and pseudoscalar mesons; the related coupling

strength g
(3)
eff = 71.4 GeV−5 has been fixed to the decay

K∗0 → Kπ with Γexp = 274 ± 37 MeV. In this example,
’t Hooft’s three-body force lifts the partial decay width
from a few MeV from the pure quark loop mechanism up
to several hundred MeV in excellent agreement with the
experiment. Here, the interference between both mecha-
nisms was constructive; we have, however, discussed sev-
eral other decay modes in which the interference was de-
structive. The interference between quark loop amplitudes
and instanton-induced amplitudes can be translated into
an interference between OZI-allowed and OZI-forbidden
amplitudes, if isoscalar mesons are involved. In these cases,
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we discussed numerous examples in which the (construc-
tive or destructive) interference between both contribu-
tions led to very realistic results for the partial decay
widths. In general, we found that the additional instanton-
induced mechanism significantly modified the result of the
pure quark loop calculation. Hereby, we discussed that
the conventional conclusion concerning the flavour con-
tents of resonances, which may be roughly formulated
as “dominant ππ decay mode indicates large nonstrange
contents in the decaying resonance” and “dominant KK̄
decay mode indicates large strange contents in the de-
caying resonance”, is not true for mesons that can decay
via the Zweig-rule–violating part of the instanton-induced
six-quark interaction and may be misleading. Summariz-
ing, we presented impressing examples for the importance
of this contributions beyond lowest order and concluded
that, apart from the quark loop diagrams, the inclusion
of additional effects at least for scalar and pseudoscalar
meson decays seems to be mandatory.

For future studies, it might be helpful to consider ef-
fects that are not included in our approach such as final-
state interactions or other mechanisms beyond lowest-
order or instanton-induced vertices; moreover, more ex-
perimental data are clearly needed for a better assessment
of the various theoretical models for this problem. The
study of strong mesons decays thus remains a challenge for
theory and experiment as well. However, we believe that
the present publication provides a reliable framework for a
detailed investigation of strong meson decays as it is based
on a completely covariant approach and includes realistic
mechanisms for the description of the decay processes.
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B. Metsch, J.-S. Suh, B. Pick, J. Reinnarth and A.V. Sarant-
sev to whom we wish to express our gratitude. Furthermore,
we thank V. Hellmann for useful numerical checks and careful
reading of the manuscript. Financial support of the Deutsche
Forschungsgemeinschaft is gratefully acknowledged.

Appendix A. Flavour factors and charge

multiplicities

For the calculation of the general (i.e. charge indepen-
dent) widths of decays like ρ → ππ instead of a special
process with definite charges like ρ+ → π+π0, it is well
known that one only needs to sum over all possible fi-
nal states and to average over all possible initial states.
Using isospin symmetry, this operation links the special

decay width Γ special
M1→M2M3

with the general decay width

Γ general
M1→M2M3

by the use of a Clebsch-Gordan coefficient
C := 〈I2m2 I3m3|I1m1〉; here, Ik denotes the isospin with
its third component mk (k = 1, 2, 3). For bosonic parti-
cles in the final states such as mesons, one has to add a
symmetry factor 1

2 if both outgoing particles are identical;
note that this factor of course must not be multiplied for

Table 13. Flavour weight factors for the various isospin chan-
nels of the strong two-body decay M1 →M2M3; see text for
details. Note that for the examples marked with † an additional
factor of 1

2
for identical mesons in the final state is included.

I1 I2 I2 Example FM1→M2M3

0 0 0 f2 → ηη † 1
1
2

0 1
2

K∗ → Kη′ 1

1 0 1 a2 → πη 1

0 1
2

1
2

f0 → KK̄ 2

1 1
2

1
2

a0 → KK̄ 1
1
2

1
2

1 K∗
2 → Kπ 3

0 1 1 f0 → ππ † 3/2

1 1 1 ρ→ ππ † 1

a KK̄ final state. Thus, the expression

Γ general
M1→M2M3

= Γ special
M1→M2M3

× 1− 1
2δM2M3

∣

∣

∣

〈

I2m2 I3m3

∣

∣ I1m1

〉

∣

∣

∣

2 (A.1)

yields the correct general decay width Γ general
M1→M2M3

al-

though in fact only the particular width Γ special
M1→M2M3

is numerically computed (see also [6]). Note that the
evaluation of the flavour trace in the decay matrix el-
ement actually yields a factor f which clearly depends
on the particular charge distribution in the special de-
cay. As examples, we quote f 2(K∗+ → K0π+) = 1 and
f2(K∗+ → K+π0) = 1

2 for the decay of an isodublet me-
son into an isodublet meson and an isovector meson. Here,
the Clebsch-Gordan coefficients C2(K∗+ → K0π+) = 1

3

and C2(K∗+ → K+π0) = 2
3 in isospin space are different

for both decay types such that the fraction FK∗→Kπ :=
f2K∗→Kπ/C

2
K∗→Kπ = 3 is constant. For the sake of clarity,

we quote all possible flavour weight factors in table 13; we
refer to ref. [6] for further comments.

Appendix B. The instanton-induced ’t Hooft

interaction

Following G. ’t Hooft’s seminal ideas on instantons in
QCD first published in ref. [20], M.A. Shifman, A.I. Vain-
shtein and V.I. Zakharov have derived the Lagrangian
∆Leff describing the contribution of instanton–anti-
instanton configurations to the effective Lagrangian for
light quarks (see [21]). Their result is discussed in ref. [10]
with respect to the relativistic quark model for mesons
which provides the basis for the present contribution.

Omitting the confining interaction for a moment,
we can write down the following effective Lagrangian
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mimicking the QCD dynamics in our model:

Leff
QCD

= L0
QCD

+∆Leff =

k +

3
∑

f=1

: Ψ̄f (i∂/−mf )Ψf : +L(2) + L(3) ; (B.1)

here, L0
QCD

=
∑3

f=1 Ψ̄f (i∂/ −m0
f )Ψf is the free-quark La-

grangian with current quark massesm0
f (for the flavour in-

dex, f = {1, 2, 3} = {u, d, s} holds). In Leff
QCD

, the masses

mf = m0
f + ∆mf are constituent-quark masses with a

characteristic contribution ∆mf to the effective mass due
to instanton effects (see [10]). The constant k denotes the
vacuum energy density and is inessential for our present
considerations. The contributions L(2) and L(3) represent
the two-body and the three-body interactions, respec-
tively; we will briefly discuss these terms in the following.

Appendix B.1. The two-body interaction

As has been discussed in ref. [10], the relativistic quark
model used in this publication incorporates a particular
residual interaction besides the global confining interac-
tion. It is described by the two-body term in ’t Hooft’s
instanton-induced force and reads explicitly

L(2) = g
(2)
eff (i)

3

16

[

: Ψ̄kΨ̄l
(

1I⊗ 1I + γ5 ⊗ γ5
)

×εiklεimn
(

2PC
3̄ + PC

6

)

ΨmΨn :
]

. (B.2)

Here, a summation over the flavour indices i, k, l,m, n =
{1, 2, 3} = {u, d, s} is understood. Note that PC

3̄ denotes

the projector onto colour antitriplet and PC
6 denotes the

projector onto colour sextet.
This instanton-induced two-body interaction only acts

on qq̄ bound states with total angular momentum J = 0,
i.e. for pseudoscalar and scalar mesons. Its effects on the
mass spectrum of these states are highly interesting; they
have been intensively discussed in refs. [11,12]. In our
calculations for light mesons, we assume SU(2) flavour
invariance and define for practical reasons the coupling

constants g := 3
8g

(2)
eff (s) and g′ := 3

8g
(2)
eff (n), where s and

n denotes “strange” and “non-strange” quarks, respec-
tively. Note that this interaction also provides a realistic
mechanism for the well-known flavour-mixing effect in the
isoscalar states. In this appendix, we refrain from a dis-
cussion of this particular aspect and also of further impli-
cations of the use of this residual interaction in our quark
model; instead, we refer to former publications for more
details (see [11,12] and references therein).

Appendix B.2. The three-body interaction

The three-body term L(3) in eq. (B.1) does not influence
the spectroscopical results for qq̄ mesons; interestingly, it
does neither contribute to baryons described by colourless

qqq bound states (see [29]). However, it has been shown
in refs. [13,31,43] that the three-body term of ’t Hooft’s
interaction generates additional contributions to strong
two-body decays beyond the pure quark loop part if all
mesons participating the process have vanishing angular
momenta, i.e. J1 = J2 = J3 = 0. Written out explicitly,
the term reads

L(3) = g
(3)
eff

27

80

[

: Ψ̄ Ψ̄ Ψ̄
(

1I⊗ 1I⊗ 1I + (γ5 ⊗ γ5 ⊗ 1I

+ cycl. perm.)
)

PF
1

(

2PC
10 + 5PC

8

)

ΨΨΨ :
]

, (B.3)

where PF
1 is a projector onto a three-particle flavour sin-

glet state and PC
10 (PC

8 ) is a projector onto colour decuplet
(octet). Due to the special Dirac structure of this interac-
tion, it can be written more convenient by using the Weyl
representation of the Dirac spinors, i.e.

Ψ(x) =

(

ξ(x)
η(x)

)

(B.4)

and γ5 is diagonal in this representation. Then we can ex-
press the three-body term of ’t Hooft’s instanton-induced
interaction according to

L(3) = g
(3)
eff

27

30

[

: η† η† η† OFSC ξ ξ ξ :
]

+
(

η ←→ ξ
)

.

(B.5)

Here, the operator OFSC acts in flavour, spin and colour
space and reads explicitly

OFSC := 2 PF
1 ⊗ PS

4 ⊗ PC
10 + 5 PF

1 ⊗ PS
2 ⊗ PC

8 , (B.6)

where PS
2 (PS

4 ) is a projector onto spin dublet (quadru-
plet). Note that the overall flavour projector PF

1 in the op-
erator OFSC leads to a violation of the phenomenological
OZI rule, if one of the particles in the decay process is an
isoscalar meson; this point is briefly discussed in sect. 3.5.
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